270
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Age related changes in microglial phenotype vary between CNS regions: Grey versus white matter differences

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Highlight

          ► This work describes age related changes in microglial phenotype in different CNS regions and highlights differences between grey and white matter.

          Abstract

          Subtle regional differences in microglial phenotype exist in the adult mouse brain. We investigated whether these differences were amplified during ageing and following systemic challenge with lipopolysaccharide (LPS). We studied microglial morphology and phenotype in young (4mo) and aged (21mo) C57/BL6 mice using immunohistochemistry and quantified the expression levels of surface molecules on microglia in white and grey matter along the rostral-caudal neuraxis. We detected significant regional, age dependent differences in microglial phenotypes, with the microglia of white matter and caudal areas of the CNS exhibiting greater upregulation of CD11b, CD68, CD11c, F4/80 and FcγRI than grey matter and rostral CNS areas. Upregulation of CD11c with age was restricted to the white matter, as was the appearance of multinucleated giant cells. Systemic LPS caused a subtle upregulation of FcγRI after 24 h, but the other markers examined were not affected. Burrowing behaviour and static rod assays were used to assess hippocampal and cerebellar integrity. Aged mice exhibited exaggerated and prolonged burrowing deficits following systemic LPS injection, while in the absence of an inflammatory challenge aged mice performed significantly worse than young mice in the static rod test. Taken together, these findings show that the effects of age on microglial phenotype and functional integrity vary significantly between CNS compartments, as do, albeit to a lesser extent, the effects of systemic LPS.

          Related collections

          Most cited references77

          • Record: found
          • Abstract: found
          • Article: not found

          Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system.

          Acute cognitive impairment (i.e., delirium) is common in elderly emergency department patients and frequently results from infections that are unrelated to the central nervous system. Since activation of the peripheral innate immune system induces brain microglia to produce inflammatory cytokines that are responsible for behavioral deficits, we investigated if aging exacerbated neuroinflammation and sickness behavior after peripheral injection of lipopolysaccharide (LPS). Microarray analysis revealed a transcriptional profile indicating the presence of primed or activated microglia and increased inflammation in the aged brain. Furthermore, aged mice had a unique gene expression profile in the brain after an intraperitoneal injection of LPS, and the LPS-induced elevation in the brain inflammatory cytokines and oxidative stress was both exaggerated and prolonged compared with adults. Aged mice were anorectic longer and lost more weight than adults after peripheral LPS administration. Moreover, reductions in both locomotor and social behavior remained 24 h later in aged mice, when adults had fully recovered, and the exaggerated neuroinflammatory response in aged mice was not reliably paralleled by increased circulating cytokines in the periphery. Taken together, these data establish that activation of the peripheral innate immune system leads to exacerbated neuroinflammation in the aged as compared with adult mice. This dysregulated link between the peripheral and central innate immune system is likely to be involved in the severe behavioral deficits that frequently occur in older adults with systemic infections.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Systemic Inflammation Induces Acute Behavioral and Cognitive Changes and Accelerates Neurodegenerative Disease

            Background Chronic neurodegeneration results in microglial activation, but the contribution of inflammation to the progress of neurodegeneration remains unclear. We have shown that microglia express low levels of proinflammatory cytokines during chronic neurodegeneration but are “primed” to produce a more proinflammatory profile after systemic challenge with bacterial endotoxin (lipopolysaccharide [LPS]). Methods Here, we investigated whether intraperitoneal (IP) challenge with LPS, to mimic systemic infection, in the early stages of prion disease can 1) produce exaggerated acute behavioral (n = 9) and central nervous system (CNS) inflammatory (n = 4) responses in diseased animals compared with control animals, and 2) whether a single LPS challenge can accelerate disease progression (n = 34–35). Results Injection of LPS (100 μg/kg), at 12 weeks postinoculation (PI), resulted in heightened CNS interleukin-1 beta (IL-1β), tumor necrosis factor-alpha (TNF-α), and interferon-beta (IFN-β) transcription and microglial IL-1β translation in prion-diseased animals relative to control animals. This inflammation caused exaggerated impairments in burrowing and locomotor activity, and induced hypothermia and cognitive changes in prion-diseased animals that were absent in LPS-treated control animals. At 15 weeks PI, LPS (500 μg/kg) acutely impaired motor coordination and muscle strength in prion-diseased but not in control animals. After recovery, these animals also showed earlier onset of disease-associated impairments on these parameters. Conclusions These data demonstrate that transient systemic inflammation superimposed on neurodegenerative disease acutely exacerbates cognitive and motor symptoms of disease and accelerates disease progression. These deleterious effects of systemic inflammation have implications for the treatment of chronic neurodegeneration and associated delirium.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The receptor DEC-205 expressed by dendritic cells and thymic epithelial cells is involved in antigen processing.

              Dendritic cells and thymic epithelial cells perform important immunoregulatory functions by presenting antigens in the form of peptides bound to cell-surface major histocompatibility complex (MHC) molecules to T cells. Whereas B cells are known to present specific antigens efficiently through their surface immunoglobins, a comparable mechanism for the capture and efficient presentation of diverse antigens by dendritic cells and thymic epithelial cells has not previously been described. We show here that their antigen-presentation function is associated with the high-level expression of DEC-205, an integral membrane protein homologous to the macrophage mannose receptor and related receptors which are able to bind carbohydrates and mediate endocytosis. DEC-205 is rapidly taken up by means of coated pits and vesicles, and is delivered to a multivesicular endosomal compartment that resembles the MHC class II-containing vesicles implicated in antigen presentation. Rabbit antibodies that bind DEC-205 are presented to reactive T-cell hybridomas 100-fold more efficiently than rabbit antibodies that do not bind DEC-205. Thus DEC-205 is a novel endocytic receptor that can be used by dendritic cells and thymic epithelial cells to direct captured antigens from the extracellular space to a specialized antigen-processing compartment.
                Bookmark

                Author and article information

                Journal
                Brain Behav Immun
                Brain Behav. Immun
                Brain, Behavior, and Immunity
                Academic Press
                0889-1591
                1090-2139
                July 2012
                July 2012
                : 26
                : 5
                : 754-765
                Affiliations
                Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
                Author notes
                [* ]Corresponding author. Address: Centre for Biological Sciences, University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK. Fax: +44(0) 2380 795332. adh1g09@ 123456soton.ac.uk
                Article
                YBRBI1870
                10.1016/j.bbi.2011.11.006
                3381227
                22155499
                d24a3bf1-5064-4ebd-bcd6-73fe50bad0c7
                © 2012 Elsevier Inc.

                This document may be redistributed and reused, subject to certain conditions.

                History
                Categories
                Article

                Neurosciences
                ageing,regional differences,white matter,lps,behaviour,microglia,cd11c
                Neurosciences
                ageing, regional differences, white matter, lps, behaviour, microglia, cd11c

                Comments

                Comment on this article