26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      An In vitro Study of Bio-Control and Plant Growth Promotion Potential of Salicaceae Endophytes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Microbial communities in the endosphere of Salicaceae plants, poplar ( Populus trichocarpa) and willow ( Salix sitchensis), have been demonstrated to be important for plant growth promotion, protection from biotic and abiotic stresses, and degradation of toxic compounds. Our study aimed to investigate bio-control activities of Salicaceae endophytes against various soil borne plant pathogens including Rhizoctonia solani AG-8, Fusarium culmorum, Gaeumannomyces graminis var. tritici, and Pythium ultimum. Additionally, different plant growth promoting traits such as biological nitrogen fixation (BNF), indole-3-acetic acid (IAA) biosynthesis, phosphate solubilization, and siderophore production were assessed in all bio-control positive strains. Burkholderia, Rahnella, Pseudomonas, and Curtobacterium were major endophyte genera that showed bio-control activities in the in-vitro assays. The bio-control activities of Burkholderia strains were stronger across all tested plant pathogens as compared to other stains. Genomes of sequenced Burkholderia strains WP40 and WP42 were surveyed to identify the putative genes involved in the bio-control activities. The ocf and hcnABC gene clusters responsible for biosynthesis of the anti-fungal metabolites, occidiofungin and hydrogen cyanide, are present in the genomes of WP40 and WP42. Nearly all endophyte strains showing the bio-control activities produced IAA, solubilized tricalcium phosphate, and synthesized siderophores in the culture medium. Moreover, some strains reduced acetylene into ethylene in the acetylene reduction assay, a common assay used for BNF. Salicaceae endophytes could be useful for bio-control of various plant pathogens, and plant growth promotion possibly through the mechanisms of BNF, IAA production, and nutrient acquisition.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Properties of bacterial endophytes and their proposed role in plant growth.

          Bacterial endophytes live inside plants for at least part of their life cycle. Studies of the interaction of endophytes with their host plants and their function within their hosts are important to address the ecological relevance of endophytes. The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant. Endophytes with this capacity might profit from association with the plant, because colonization is enhanced. In turn, host plants benefit by stress reduction and increased root growth. This mechanism leads to the concept of 'competent' endophytes, defined as endophytes that are equipped with genes important for maintenance of plant-endophyte associations. The ecological role of these endophytes and their relevance for plant growth are discussed here.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stress tolerance in plants via habitat-adapted symbiosis.

              We demonstrate that native grass species from coastal and geothermal habitats require symbiotic fungal endophytes for salt and heat tolerance, respectively. Symbiotically conferred stress tolerance is a habitat-specific phenomenon with geothermal endophytes conferring heat but not salt tolerance, and coastal endophytes conferring salt but not heat tolerance. The same fungal species isolated from plants in habitats devoid of salt or heat stress did not confer these stress tolerances. Moreover, fungal endophytes from agricultural crops conferred disease resistance and not salt or heat tolerance. We define habitat-specific, symbiotically-conferred stress tolerance as habitat-adapted symbiosis and hypothesize that it is responsible for the establishment of plants in high-stress habitats. The agricultural, coastal and geothermal plant endophytes also colonized tomato (a model eudicot) and conferred disease, salt and heat tolerance, respectively. In addition, the coastal plant endophyte colonized rice (a model monocot) and conferred salt tolerance. These endophytes have a broad host range encompassing both monocots and eudicots. Interestingly, the endophytes also conferred drought tolerance to plants regardless of the habitat of origin. Abiotic stress tolerance correlated either with a decrease in water consumption or reactive oxygen sensitivity/generation but not to increased osmolyte production. The ability of fungal endophytes to confer stress tolerance to plants may provide a novel strategy for mitigating the impacts of global climate change on agricultural and native plant communities.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                13 March 2017
                2017
                : 8
                : 386
                Affiliations
                [1] 1School of Environmental and Forest Sciences, College of the Environment, University of Washington Seattle, WA, USA
                [2] 2Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia Viterbo, Italy
                [3] 3Department of Biology, University of Washington Seattle, WA, USA
                [4] 4Wheat Health, Genetics and Quality Research Unit, USDA-ARS Pullman, WA, USA
                [5] 5Department of Plant Pathology, Washington State University Pullman, WA, USA
                Author notes

                Edited by: Suhelen Egan, University of New South Wales, Australia

                Reviewed by: Blanca B. Landa, Instituto de Agricultura Sostenible (CSIC), Spain; Vittorio Venturi, International Centre for Genetic Engineering and Biotechnology, Italy

                *Correspondence: Sharon L. Doty sldoty@ 123456uw.edu

                This article was submitted to Microbial Symbioses, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2017.00386
                5347143
                28348550
                d2549696-1985-4717-9de0-1fbff5e1b816
                Copyright © 2017 Kandel, Firrincieli, Joubert, Okubara, Leston, McGeorge, Mugnozza, Harfouche, Kim and Doty.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 01 September 2016
                : 23 February 2017
                Page count
                Figures: 8, Tables: 4, Equations: 0, References: 101, Pages: 16, Words: 12039
                Funding
                Funded by: U.S. Department of Agriculture 10.13039/100000199
                Award ID: 2012-68002-19824
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                bio-control,salicaceae endophytes,soil borne plant pathogens,burkholderia

                Comments

                Comment on this article