54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      MCM Paradox: Abundance of Eukaryotic Replicative Helicases and Genomic Integrity

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          As a crucial component of DNA replication licensing system, minichromosome maintenance (MCM) 2–7 complex acts as the eukaryotic DNA replicative helicase. The six related MCM proteins form a heterohexamer and bind with ORC, CDC6, and Cdt1 to form the prereplication complex. Although the MCMs are well known as replicative helicases, their overabundance and distribution patterns on chromatin present a paradox called the “MCM paradox.” Several approaches had been taken to solve the MCM paradox and describe the purpose of excess MCMs distributed beyond the replication origins. Alternative functions of these MCMs rather than a helicase had also been proposed. This review focuses on several models and concepts generated to solve the MCM paradox coinciding with their helicase function and provides insight into the concept that excess MCMs are meant for licensing dormant origins as a backup during replication stress. Finally, we extend our view towards the effect of alteration of MCM level. Though an excess MCM constituent is needed for normal cells to withstand stress, there must be a delineation of the threshold level in normal and malignant cells. This review also outlooks the future prospects to better understand the MCM biology.

          Related collections

          Most cited references122

          • Record: found
          • Abstract: found
          • Article: not found

          DNA replication in eukaryotic cells.

          The maintenance of the eukaryotic genome requires precisely coordinated replication of the entire genome each time a cell divides. To achieve this coordination, eukaryotic cells use an ordered series of steps to form several key protein assemblies at origins of replication. Recent studies have identified many of the protein components of these complexes and the time during the cell cycle they assemble at the origin. Interestingly, despite distinct differences in origin structure, the identity and order of assembly of eukaryotic replication factors is highly conserved across all species. This review describes our current understanding of these events and how they are coordinated with cell cycle progression. We focus on bringing together the results from different organisms to provide a coherent model of the events of initiation. We emphasize recent progress in determining the function of the different replication factors once they have been assembled at the origin.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks.

            The components of the replisome that preserve genomic stability by controlling the progression of eukaryotic DNA replication forks are poorly understood. Here, we show that the GINS (go ichi ni san) complex allows the MCM (minichromosome maintenance) helicase to interact with key regulatory proteins in large replisome progression complexes (RPCs) that are assembled during initiation and disassembled at the end of S phase. RPC components include the essential initiation and elongation factor, Cdc45, the checkpoint mediator Mrc1, the Tof1-Csm3 complex that allows replication forks to pause at protein-DNA barriers, the histone chaperone FACT (facilitates chromatin transcription) and Ctf4, which helps to establish sister chromatid cohesion. RPCs also interact with Mcm10 and topoisomerase I. During initiation, GINS is essential for a specific subset of RPC proteins to interact with MCM. GINS is also important for the normal progression of DNA replication forks, and we show that it is required after initiation to maintain the association between MCM and Cdc45 within RPCs.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication.

              The six main minichromosome maintenance proteins (Mcm2-7), which presumably constitute the core of the replicative DNA helicase, are present in chromatin in large excess relative to the number of active replication forks. To evaluate the relevance of this apparent surplus of Mcm2-7 complexes in human cells, their levels were down-regulated by using RNA interference. Interestingly, cells continued to proliferate for several days after the acute (>90%) reduction of Mcm2-7 concentration. However, they became hypersensitive to DNA replication stress, accumulated DNA lesions, and eventually activated a checkpoint response that prevented mitotic division. When this checkpoint was abrogated by the addition of caffeine, cells quickly lost viability, and their karyotypes revealed striking chromosomal aberrations. Single-molecule analyses revealed that cells with a reduced concentration of Mcm2-7 complexes display normal fork progression but have lost the potential to activate "dormant" origins that serve a backup function during DNA replication. Our data show that the chromatin-bound "excess" Mcm2-7 complexes play an important role in maintaining genomic integrity under conditions of replicative stress.
                Bookmark

                Author and article information

                Journal
                Mol Biol Int
                Mol Biol Int
                MBI
                Molecular Biology International
                Hindawi Publishing Corporation
                2090-2182
                2090-2190
                2014
                19 October 2014
                : 2014
                : 574850
                Affiliations
                1Cancer Genetics Laboratory, Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, India
                2Department of Zoology, Mahila Mahavidyalaya College, Banaras Hindu University, Varanasi, India
                3Department of Radiotherapy & Radiation Medicine, Banaras Hindu University, Varanasi, India
                Author notes
                *Gopeshwar Narayan: gnarayan@ 123456bhu.ac.in

                Academic Editor: Malayannan B. Subramaniam

                Author information
                http://orcid.org/0000-0001-5851-9997
                Article
                10.1155/2014/574850
                4217321
                25386362
                d25f1abb-b62d-40c0-b28d-6d838812bd9f
                Copyright © 2014 Mitali Das et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 29 August 2014
                : 30 September 2014
                Categories
                Review Article

                Molecular biology
                Molecular biology

                Comments

                Comment on this article