22
views
0
recommends
+1 Recommend
2 collections
    0
    shares

      Why publish your research Open Access with G3: Genes|Genomes|Genetics?

      Learn more and submit today!

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Estimated Breeding Values Using Genomic Relationship Matrices in a Cloned Population of Loblolly Pine

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Replacement of the average numerator relationship matrix derived from the pedigree with the realized genomic relationship matrix based on DNA markers might be an attractive strategy in forest tree breeding for predictions of genetic merit. We used genotypes from 3461 single-nucleotide polymorphism loci to estimate genomic relationships for a population of 165 loblolly pine ( Pinus taeda L.) individuals. Phenotypes of the 165 individuals were obtained from clonally replicated field trials and were used to estimate breeding values for growth (stem volume). Two alternative methods, based on allele frequencies or regression, were used to generate the genomic relationship matrices. The accuracies of genomic estimated breeding values based on the genomic relationship matrices and breeding values estimated based on the average numerator relationship matrix were compared. On average, the accuracy of predictions based on genomic relationships ranged between 0.37 and 0.74 depending on the validation method. We did not detect differences in the accuracy of predictions based on genomic relationship matrices estimated by two different methods. Using genomic relationship matrices allowed modeling of Mendelian segregation within full-sib families, an important advantage over a traditional genetic evaluation system based on pedigree. We conclude that estimation of genomic relationships could be a powerful tool in forest tree breeding because it accurately accounts both for genetic relationships among individuals and for nuisance effects such as location and replicate effects, and makes more accurate selection possible within full-sib crosses.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Genomic selection.

          Genomic selection is a form of marker-assisted selection in which genetic markers covering the whole genome are used so that all quantitative trait loci (QTL) are in linkage disequilibrium with at least one marker. This approach has become feasible thanks to the large number of single nucleotide polymorphisms (SNP) discovered by genome sequencing and new methods to efficiently genotype large number of SNP. Simulation results and limited experimental results suggest that breeding values can be predicted with high accuracy using genetic markers alone but more validation is required especially in samples of the population different from that in which the effect of the markers was estimated. The ideal method to estimate the breeding value from genomic data is to calculate the conditional mean of the breeding value given the genotype of the animal at each QTL. This conditional mean can only be calculated by using a prior distribution of QTL effects so this should be part of the research carried out to implement genomic selection. In practice, this method of estimating breeding values is approximated by using the marker genotypes instead of the QTL genotypes but the ideal method is likely to be approached more closely as more sequence and SNP data is obtained. Implementation of genomic selection is likely to have major implications for genetic evaluation systems and for genetic improvement programmes generally and these are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Performance of genomic selection in mice.

            Selection plans in plant and animal breeding are driven by genetic evaluation. Recent developments suggest using massive genetic marker information, known as "genomic selection." There is little evidence of its performance, though. We empirically compared three strategies for selection: (1) use of pedigree and phenotypic information, (2) use of genomewide markers and phenotypic information, and (3) the combination of both. We analyzed four traits from a heterogeneous mouse population (http://gscan.well.ox.ac.uk/), including 1884 individuals and 10,946 SNP markers. We used linear mixed models, using extensions of association analysis. Cross-validation techniques were used, providing assumption-free estimates of predictive ability. Sampling of validation and training data sets was carried out across and within families, which allows comparing across- and within-family information. Use of genomewide genetic markers increased predictive ability up to 0.22 across families and up to 0.03 within families. The latter is not statistically significant. These values are roughly comparable to increases of up to 0.57 (across family) and 0.14 (within family) in accuracy of prediction of genetic value. In this data set, within-family information was more accurate than across-family information, and populational linkage disequilibrium was not a completely accurate source of information for genetic evaluation. This fact questions some applications of genomic selection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              Accurate prediction of genetic values for complex traits by whole-genome resequencing.

              Whole-genome resequencing technology has improved rapidly during recent years and is expected to improve further such that the sequencing of an entire human genome sequence for $1000 is within reach. Our main aim here is to use whole-genome sequence data for the prediction of genetic values of individuals for complex traits and to explore the accuracy of such predictions. This is relevant for the fields of plant and animal breeding and, in human genetics, for the prediction of an individual's risk for complex diseases. Here, population history and genomic architectures were simulated under the Wright-Fisher population and infinite-sites mutation model, and prediction of genetic value was by the genomic selection approach, where a Bayesian nonlinear model was used to predict the effects of individual SNPs. The Bayesian model assumed a priori that only few SNPs are causative, i.e., have an effect different from zero. When using whole-genome sequence data, accuracies of prediction of genetic value were >40% increased relative to the use of dense approximately 30K SNP chips. At equal high density, the inclusion of the causative mutations yielded an extra increase of accuracy of 2.5-3.7%. Predictions of genetic value remained accurate even when the training and evaluation data were 10 generations apart. Best linear unbiased prediction (BLUP) of SNP effects does not take full advantage of the genome sequence data, and nonlinear predictions, such as the Bayesian method used here, are needed to achieve maximum accuracy. On the basis of theoretical work, the results could be extended to more realistic genome and population sizes.
                Bookmark

                Author and article information

                Journal
                G3 (Bethesda)
                Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes, Genomes, Genetics
                G3: Genes|Genomes|Genetics
                Genetics Society of America
                2160-1836
                1 May 2013
                May 2013
                : 3
                : 5
                : 909-916
                Affiliations
                [* ]Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, North Carolina 27695
                []Department of Plant Science, University of California-Davis, Davis, California 95616
                Author notes

                Supporting information is available online at http://www.g3journal.org/lookup/suppl/doi:10.1534/g3.113.005975/-/DC1

                [1]

                These authors contributed equally to this work.

                [2 ]Corresponding author: North Carolina State University, Department of Forestry and Environmental Resources, Campus Box 8002, Raleigh, NC 27695. E-mail: fisik@ 123456ncsu.edu
                Article
                GGG_005975
                10.1534/g3.113.005975
                3656736
                23585458
                d268de11-54a2-490f-b0c0-a2801fbc4d68
                Copyright © 2013 Zapata-Valenzuela et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Unported License ( http://creativecommons.org/licenses/by/3.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 March 2013
                : 27 March 2013
                Page count
                Pages: 8
                Categories
                Investigations
                Custom metadata
                v1

                Genetics
                genpred,shared data resource,pinus taeda,quantitative genetics,best linear unbiased prediction

                Comments

                Comment on this article