1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Inhaled corticosteroids attenuate epithelial mesenchymal transition: implications for COPD and lung cancer prophylaxis

      , , ,
      European Respiratory Journal
      European Respiratory Society (ERS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Reticular basement membrane fragmentation and potential epithelial mesenchymal transition is exaggerated in the airways of smokers with chronic obstructive pulmonary disease.

          In COPD, the airways are chronically inflamed, and we have now observed fragmentation of the reticular basement membrane (Rbm). This appears to be a hallmark of the process known as epithelial mesenchymal transition (EMT), in which epithelial cells migrate through the Rbm and differentiate into fibroblasts. The aim of this study was to confirm the extent and relevance of Rbm fragmentation in smokers and patients with COPD, and to undertake a preliminary analysis of some classical markers of EMT. Endobronchial biopsies from current smokers (CS; n = 17) and ex-smokers with COPD (ES; n = 15), smokers with normal lung function (NS; n = 16) and never-smoking control subjects (NC; n = 15) were stained for the EMT markers, S100A4, vimentin, epidermal growth factor receptor and matrix metalloproteinase-9. Compared with NC, there was significant Rbm fragmentation in the CS, ES and NS groups, which was positively associated with smoking history in subjects with COPD. Staining for basal epithelial S100A4, epithelial epidermal growth factor receptor and matrix metalloproteinase-9 in cells within Rbm clefts, and for S100A4 in Rbm cells, was increased in the CS, NS and ES groups compared with the NC group. There was also increased Rbm cell S100A4 staining in the CS group compared with the ES and NS groups. Basal epithelial cell staining for S100A4 was inversely correlated with airflow limitation. Double staining for both S100A4 and vimentin further strengthened the likelihood that these changes represented active EMT. This is the first detailed description of fragmentation and cellularity of the Rbm in smokers, which were most marked in subjects with COPD. The data are consistent with active EMT in these subjects.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Abnormal M1/M2 macrophage phenotype profiles in the small airway wall and lumen in smokers and chronic obstructive pulmonary disease (COPD)

            We explore potential dysregulation of macrophage phenotypes in COPD pathogenesis through integrated study of human small airway tissue, bronchoalveolar lavage (BAL) and an experimental murine model of COPD. We evaluated human airway tissue and BAL from healthy controls, normal lung function smokers (NLFS), and COPD subjects. Both small airways and BAL cells were immunohistochemically stained with anti-CD68 for total macrophages and with anti-CD163 for M2, and anti-iNOS for M1 macrophages. Multiplex ELISA measured BAL cytokines. Comparable cigarette smoke-induced experimental COPD mouse model was assessed for relevant mRNA profiles. We found an increase in pro-inflammatory M1s in the small airways of NLFS and COPD compared to controls with a reciprocal decrease in M2 macrophages, which remained unchanged among pathological groups. However, luminal macrophages showed a dominant M2 phenotype in both NLFS and COPD subjects. BAL cytokine skewed towards an M2 profile with increase in CCL22, IL-4, IL-13, and IL-10 in both NLFS and COPDs. The mouse-model of COPD showed similar increase in mRNA for M2 markers. Our finding suggests abnormal macrophage switching in both mucosal and luminal areas of COPD patients, that strongly associated with cytokine balance. There may be potential for beneficial therapeutic cytokine manipulation of macrophage phenotypes in COPD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A randomized controlled trial of inhaled corticosteroids (ICS) on markers of epithelial–mesenchymal transition (EMT) in large airway samples in COPD: an exploratory proof of concept study

              Background We recently reported that epithelial–mesenchymal transition (EMT) is active in the airways in chronic obstructive pulmonary disease (COPD), suggesting presence of an active profibrotic and promalignant stroma. With no data available on potential treatment effects, we undertook a blinded analysis of inhaled corticosteroids (ICS) effects versus placebo on EMT markers in previously obtained endobronchial biopsies in COPD patients, as a “proof of concept” study. Methods Assessment of the effects of inhaled fluticasone propionate (FP; 500 μg twice daily for 6 months) versus placebo in 34 COPD patients (23 on fluticasone propionate and eleven on placebo). The end points were epidermal growth factor receptor (EGFR; marker of epithelial activation) and the biomarkers of EMT: reticular basement membrane (Rbm) fragmentation (“hallmark” structural marker), matrix metalloproteinase-9 (MMP-9) cell expression, and S100A4 expression in basal epithelial and Rbm cells (mesenchymal transition markers). Results Epithelial activation, “clefts/fragmentation” in the Rbm, and changes in the other biomarkers all regressed on ICS, at or close to conventional levels of statistical significance. From these data, we have been able to nominate primary and secondary end points and develop power calculations that would be applicable to a definitive prospective study. Conclusion Although only a pilot “proof of concept” study, this trial provided strong suggestive support for an anti-EMT effect of ICS in COPD airways. A larger and fully powered prospective study is now indicated as this issue is likely to be extremely important. Such studies may clarify the links between ICS use and better clinical outcomes and protection against lung cancer in COPD.
                Bookmark

                Author and article information

                Journal
                European Respiratory Journal
                Eur Respir J
                European Respiratory Society (ERS)
                0903-1936
                1399-3003
                July 11 2019
                July 2019
                July 11 2019
                July 2019
                : 54
                : 1
                : 1900778
                Article
                10.1183/13993003.00778-2019
                31296782
                d269b5ba-df04-4125-9b2a-7dbe9841c65a
                © 2019

                https://www.ersjournals.com/user-licence

                History

                Comments

                Comment on this article