37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      The angiotensin receptor blocker, azilsartan medoxomil (TAK-491), suppresses vascular wall expression of plasminogen activator inhibitor type-I protein potentially facilitating the stabilization of atherosclerotic plaques.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Increased expression of plasminogen activator inhibitor type-I (PAI-1) in vessel walls seems to accelerate atherosclerosis. Angiotensin II can increase the synthesis of PAI-1. Inhibition of this process may facilitate migration of vascular smooth muscle cells (VSMCs) stabilizing atherosclerotic plaques. To determine whether the inhibition of the angiotensin II type 1 receptor can blunt the expression of PAI-1 protein in the aortic wall, we administered azilsartan medoxomil (AZL-M), a prodrug of an angiotensin II type 1 receptor blocker developed by the Takeda Pharmaceutical Company Limited, for 16 weeks to ApoE knockout mice on a high fat diet rendered overexpressors of PAI-1 in VSMCs. Homogenates of the pooled aortas from each group were assayed for PAI-1 by enzyme-linked immunosorbent assay. Cellularity of atherosclerotic lesions was assessed by 4',6-diamidino-2-phenylindole staining in sections of aortic lesions, and collagen content in the lesions was quantified by immunohistochemistry. Aortic wall PAI-1 was decreased by each of the 3 dosage regimens of AZL-M (0.1-10 mg/kg). Cellularity and collagen were increased in lesions from mice given AZL-M, consistent with the development of more stable plaques. Accordingly, the suppression of PAI-1 expression by AZL-M may attenuate the evolution of atherosclerotic plaques vulnerable to rupture.

          Related collections

          Author and article information

          Journal
          J. Cardiovasc. Pharmacol.
          Journal of cardiovascular pharmacology
          Ovid Technologies (Wolters Kluwer Health)
          1533-4023
          0160-2446
          Aug 2011
          : 58
          : 2
          Affiliations
          [1 ] Department of Medicine, Cardiovascular Research Institute, University of Vermont, Burlington, VT, USA. christopher.french@uvm.edu
          Article
          10.1097/FJC.0b013e31821dcbea
          21558880
          d26a33ad-d382-423b-b4d9-5940675ae5bc
          History

          Comments

          Comment on this article