21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Increased Expression of Nox1 in Neointimal Smooth Muscle Cells Promotes Activation of Matrix Metalloproteinase-9

      case-report

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective: Vascular injury causes neointimal hypertrophy, which is characterized by redox-mediated matrix degradation and smooth muscle cell (SMC) migration and proliferation. We hypothesized that, as compared to the adjacent medial SMCs, neointimal SMCs produce increased superoxide via NADPH oxidase, which induces redox-sensitive intracellular signaling to activate matrix metalloproteinase-9 (MMP-9). Methods and Results: Two weeks after balloon injury, rat aorta developed a prominent neointima, containing increased expression of NADPH oxidase and reactive oxygen species (ROS) as compared to the medial layer. Next, SMCs were isolated from either the neointima or the media and studied in culture. Neointimal-derived SMCs exhibited increased Nox1 expression and ROS levels as compared to medial SMCs. Neointimal SMCs had higher cell growth rates than medial SMCs. ROS-dependent ERK1/2 phosphorylation was greater in neointimal SMCs. MMP-9 activity, as detected by gel zymography, was greater in neointimal SMCs under resting and stimulated conditions and was prevented by expression of an antisense to Nox1 or treatment with an ERK1/2 inhibitor. Conclusions: Following vascular injury, the increased expression of Nox1 in SMCs within the neointima initiates redox-dependent phosphorylation of ERK1/2 and subsequent MMP-9 activation.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Cell transformation by the superoxide-generating oxidase Mox1.

          Reactive oxygen species (ROS) generated in some non-phagocytic cells are implicated in mitogenic signalling and cancer. Many cancer cells show increased production of ROS, and normal cells exposed to hydrogen peroxide or superoxide show increased proliferation and express growth-related genes. ROS are generated in response to growth factors, and may affect cell growth, for example in vascular smooth-muscle cells. Increased ROS in Ras-transformed fibroblasts correlates with increased mitogenic rate. Here we describe the cloning of mox1, which encodes a homologue of the catalytic subunit of the superoxide-generating NADPH oxidase of phagocytes, gp91phox. mox1 messenger RNA is expressed in colon, prostate, uterus and vascular smooth muscle, but not in peripheral blood leukocytes. In smooth-muscle cells, platelet-derived growth factor induces mox1 mRNA production, while antisense mox1 mRNA decreases superoxide generation and serum-stimulated growth. Overexpression of mox1 in NIH3T3 cells increases superoxide generation and cell growth. Cells expressing mox1 have a transformed appearance, show anchorage-independent growth and produce tumours in athymic mice. These data link ROS production by Mox1 to growth control in non-phagocytic cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            NADPH oxidases: functions and pathologies in the vasculature.

            Reactive oxygen species are ubiquitous signaling molecules in biological systems. Four members of the NADPH oxidase (Nox) enzyme family are important sources of reactive oxygen species in the vasculature: Nox1, Nox2, Nox4, and Nox5. Signaling cascades triggered by stresses, hormones, vasoactive agents, and cytokines control the expression and activity of these enzymes and of their regulatory subunits, among which p22phox, p47phox, Noxa1, and p67phox are present in blood vessels. Vascular Nox enzymes are also regulated by Rac, ClC-3, Poldip2, and protein disulfide isomerase. Multiple Nox subtypes, simultaneously present in different subcellular compartments, produce specific amounts of superoxide, some of which is rapidly converted to hydrogen peroxide. The identity and location of these reactive oxygen species, and of the enzymes that degrade them, determine their downstream signaling pathways. Nox enzymes participate in a broad array of cellular functions, including differentiation, fibrosis, growth, proliferation, apoptosis, cytoskeletal regulation, migration, and contraction. They are involved in vascular pathologies such as hypertension, restenosis, inflammation, atherosclerosis, and diabetes. As our understanding of the regulation of these oxidases progresses, so will our ability to alter their functions and associated pathologies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype.

              The mechanisms responsible for maintaining the differentiated phenotype of adult vascular smooth muscle cells (VSMCs) are incompletely understood. Reactive oxygen species (ROS) have been implicated in VSMC differentiation, but the responsible sources are unknown. In this study, we investigated the role of Nox1 and Nox4-derived ROS in this process. Primary VSMCs were used to study the relationship between Nox homologues and differentiation markers such as smooth muscle alpha-actin (SM alpha-actin), smooth muscle myosin heavy chain (SM-MHC), heavy caldesmon, and calponin. We found that Nox4 and differentiation marker genes were downregulated from passage 1 to passage 6 to 12, whereas Nox1 was gradually upregulated. Nox4 co-localized with SM alpha-actin-based stress fibers in differentiated VSMC, and moved into focal adhesions in de-differentiated cells. siRNA against nox4 reduced NADPH-driven superoxide production in serum-deprived VSMCs and downregulated SM-alpha actin, SM-MHC, and calponin, as well as SM-alpha actin stress fibers. Nox1 depletion did not decrease these parameters. Nox4-derived ROS are critical to the maintenance of the differentiated phenotype of VSMCs. These findings highlight the importance of identifying the specific source of ROS involved in particular cellular functions when designing therapeutic interventions.
                Bookmark

                Author and article information

                Journal
                JVR
                J Vasc Res
                10.1159/issn.1018-1172
                Journal of Vascular Research
                S. Karger AG
                1018-1172
                1423-0135
                2012
                May 2012
                15 March 2012
                : 49
                : 3
                : 242-248
                Affiliations
                Departments of aMedicine and bAnatomy and Cell Biology, University of Iowa, and cVeterans Affair Medical Center, Iowa City, Iowa, and dDepartment of Medicine, Emory University, Atlanta, Ga., USA
                Author notes
                *Prof. Francis J. Miller, Jr., Department of Internal Medicine, University of Iowa, 285 Newton Road, Room 2269 CBRB, Iowa City, IA 52242 (USA), Tel. +1 319 334 4524, E-Mail francis-miller@uiowa.edu
                Article
                332958 PMC3369242 J Vasc Res 2012;49:242–248
                10.1159/000332958
                PMC3369242
                22433789
                d26d50d5-ed6b-495a-a507-24c89fd9ff80
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 18 August 2011
                : 07 September 2011
                Page count
                Figures: 4, Pages: 7
                Categories
                Research Paper

                General medicine,Neurology,Cardiovascular Medicine,Internal medicine,Nephrology
                Antioxidants,Oxidative stress,Restenosis,NADPH oxidases

                Comments

                Comment on this article