24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Estetrol Modulates Endothelial Nitric Oxide Synthesis in Human Endothelial Cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Estetrol (E4) is a natural human estrogen that is present at high concentrations during pregnancy. E4 has been reported to act as an endogenous estrogen receptor modulator, exerting estrogenic actions on the endometrium or the central nervous system but presenting antagonistic effects on the breast. Due to these characteristics, E4 is currently being developed for a number of clinical applications, including contraception and menopausal hormone therapy. Endothelial nitric oxide (NO) is a key player for vascular function and disease during pregnancy and throughout aging in women. Endothelial NO is an established target of estrogens that enhance its formation in human endothelial cells. We here addressed the effects of E4 on the activity and expression of the endothelial nitric oxide synthase (eNOS) in cultured human umbilical vein endothelial cells (HUVEC). E4 stimulated the activation of eNOS and NO secretion in HUVEC. E4 was significantly less effective compared to E2, and a peculiar concentration-dependent effect was found, with higher amounts of E4 being less effective than lower concentrations. When E2 was combined with E4, an interesting pattern was noted. E4 antagonized NO synthesis induced by pregnancy-like E2 concentrations. However, E4 did not impede the modest induction of NO synthesis associated with postmenopausal-like E2 levels. These results support the hypothesis that E4 may be a regulator of NO synthesis in endothelial cells and raise questions on its peculiar signaling in this context. Our results may be useful to interpret the role of E4 during human pregnancy and possibly to help develop this interesting steroid for clinical use.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Nitric oxide decreases cytokine-induced endothelial activation. Nitric oxide selectively reduces endothelial expression of adhesion molecules and proinflammatory cytokines.

          To test the hypothesis that nitric oxide (NO) limits endothelial activation, we treated cytokine-stimulated human saphenous vein endothelial cells with several NO donors and assessed their effects on the inducible expression of vascular cell adhesion molecule-1 (VCAM-1). In a concentration-dependent manner, NO inhibited interleukin (IL)-1 alpha-stimulated VCAM-1 expression by 35-55% as determined by cell surface enzyme immunoassays and flow cytometry. This inhibition was paralleled by reduced monocyte adhesion to endothelial monolayers in nonstatic assays, was unaffected by cGMP analogues, and was quantitatively similar after stimulation by either IL-1 alpha, IL-1 beta, IL-4, tumor necrosis factor (TNF alpha), or bacterial lipopolysaccharide. NO also decreased the endothelial expression of other leukocyte adhesion molecules (E-selectin and to a lesser extent, intercellular adhesion molecule-1) and secretable cytokines (IL-6 and IL-8). Inhibition of endogenous NO production by L-N-monomethyl-arginine also induced the expression of VCAM-1, but did not augment cytokine-induced VCAM-1 expression. Nuclear run-on assays, transfection studies using various VCAM-1 promoter reporter gene constructs, and electrophoretic mobility shift assays indicated that NO represses VCAM-1 gene transcription, in part, by inhibiting NF-kappa B. We propose that NO's ability to limit endothelial activation and inhibit monocyte adhesion may contribute to some of its antiatherogenic and antiinflammatory properties within the vessel wall.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase.

            Oestrogen produces diverse biological effects through binding to the oestrogen receptor (ER). The ER is a steroid hormone nuclear receptor, which, when bound to oestrogen, modulates the transcriptional activity of target genes. Controversy exists, however, concerning whether ER has a role outside the nucleus, particularly in mediating the cardiovascular protective effects of oestrogen. Here we show that the ER isoform, ER alpha, binds in a ligand-dependent manner to the p85alpha regulatory subunit of phosphatidylinositol-3-OH kinase (PI(3)K). Stimulation with oestrogen increases ER alpha-associated PI(3)K activity, leading to the activation of protein kinase B/Akt and endothelial nitric oxide synthase (eNOS). Recruitment and activation of PI(3)K by ligand-bound ER alpha are independent of gene transcription, do not involve phosphotyrosine adapter molecules or src-homology domains of p85alpha, and extend to other steroid hormone receptors. Mice treated with oestrogen show increased eNOS activity and decreased vascular leukocyte accumulation after ischaemia and reperfusion injury. This vascular protective effect of oestrogen was abolished in the presence of PI(3)K or eNOS inhibitors. Our findings define a physiologically important non-nuclear oestrogen-signalling pathway involving the direct interaction of ER alpha with PI(3)K.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitric oxide-generating vasodilators and 8-bromo-cyclic guanosine monophosphate inhibit mitogenesis and proliferation of cultured rat vascular smooth muscle cells.

              Endothelium-derived relaxing factor has been recently identified as nitric oxide. The purpose of this study was to determine if vasodilator drugs that generate nitric oxide inhibit vascular smooth muscle mitogenesis and proliferation in culture. Three chemically dissimilar vasodilators, sodium nitroprusside, S-nitroso-N-acetylpenicillamine and isosorbide dinitrate, dose-dependently inhibited serum-induced thymidine incorporation by rat aortic smooth muscle cells. Moreover, 8-bromo-cGMP mimicked the antimitogenic effect of the nitric oxide-generating drugs. The antimitogenic effect of S-nitroso-N-acetylpenicillamine was inhibited by hemoglobin and potentiated by superoxide dismutase, supporting the view that nitric oxide was the ultimate effector. Sodium nitroprusside and S-nitroso-N-acetylpenicillamine significantly decreased the proliferation of vascular smooth muscle cells. Moreover, the inhibition of mitogenesis and proliferation was shown to be independent of cell damage, as documented by several criteria of cell viability. These results suggest that endogenous nitric oxide may function as a modulator of vascular smooth muscle cell mitogenesis and proliferation, by a cGMP-mediated mechanism.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/155323
                URI : http://frontiersin.org/people/u/254761
                URI : http://frontiersin.org/people/u/124251
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                22 July 2015
                2015
                : 6
                : 111
                Affiliations
                [1] 1Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, University of Pisa , Pisa, Italy
                [2] 2Department of Obstetrics and Gynecology, University of Modena and Reggio Emilia , Modena, Italy
                Author notes

                Edited by: Michael Schumacher, INSERM, France

                Reviewed by: Subrata Chakrabarti, The University of Western Ontario, Canada; Guillermo Romero, University of Pittsburgh, USA

                *Correspondence: Tommaso Simoncini, Molecular and Cellular Gynecological Endocrinology Laboratory (MCGEL), Department of Clinical and Experimental Medicine, Division of Obstetrics and Gynecology, University of Pisa, Via Roma 57, Pisa 56100, Italy, tommaso.simoncini@ 123456med.unipi.it

                Maria Magdalena Montt-Guevara and Maria Silvia Giretti have contributed equally to this work.

                Specialty section: This article was submitted to Cellular Endocrinology, a section of the journal Frontiers in Endocrinology

                Article
                10.3389/fendo.2015.00111
                4510430
                26257704
                d286abdd-af3e-41ae-8c2f-c49b8c3b42ff
                Copyright © 2015 Montt-Guevara, Giretti, Russo, Giannini, Mannella, Genazzani, Genazzani and Simoncini.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 13 April 2015
                : 06 July 2015
                Page count
                Figures: 5, Tables: 0, Equations: 0, References: 52, Pages: 9, Words: 6357
                Funding
                Funded by: University of Pisa
                Funded by: Italian Ministry of Education and Research
                Award ID: 20102CHST5
                Categories
                Endocrinology
                Original Research

                Endocrinology & Diabetes
                estetrol,estrogen,endothelial cells,nitric oxide,endothelial nitric oxide synthase

                Comments

                Comment on this article