69
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We sought to assess whether the effects of mesenchymal stromal cells (MSC) on lung inflammation and remodeling in experimental emphysema would differ according to MSC source and administration route. Emphysema was induced in C57BL/6 mice by intratracheal (IT) administration of porcine pancreatic elastase (0.1 UI) weekly for 1 month. After the last elastase instillation, saline or MSCs (1×10 5), isolated from either mouse bone marrow (BM), adipose tissue (AD) or lung tissue (L), were administered intravenously (IV) or IT. After 1 week, mice were euthanized. Regardless of administration route, MSCs from each source yielded: 1) decreased mean linear intercept, neutrophil infiltration, and cell apoptosis; 2) increased elastic fiber content; 3) reduced alveolar epithelial and endothelial cell damage; and 4) decreased keratinocyte-derived chemokine (KC, a mouse analog of interleukin-8) and transforming growth factor-β levels in lung tissue. In contrast with IV, IT MSC administration further reduced alveolar hyperinflation (BM-MSC) and collagen fiber content (BM-MSC and L-MSC). Intravenous administration of BM- and AD-MSCs reduced the number of M1 macrophages and pulmonary hypertension on echocardiography, while increasing vascular endothelial growth factor. Only BM-MSCs (IV > IT) increased the number of M2 macrophages. In conclusion, different MSC sources and administration routes variably reduced elastase-induced lung damage, but IV administration of BM-MSCs resulted in better cardiovascular function and change of the macrophage phenotype from M1 to M2.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          Differences in interleukin-8 and tumor necrosis factor-alpha in induced sputum from patients with chronic obstructive pulmonary disease or asthma.

          Asthma and chronic obstructive pulmonary disease are characterized by chronic airway inflammation. Studies using bronchoalveolar lavage (BAL) have shown an increased proportion of eosinophils in the BAL fluid from asthmatics compared with that from normal subjects, whereas studies of chronic obstructive pulmonary disease (COPD) have shown increased numbers of neutrophils. Induced sputum allows sampling of respiratory tract secretions from patients and control subjects, providing a noninvasive method of studying airway secretions and allowing characterization of cells and measurement of soluble markers. We investigated whether induced sputum was a useful method of studying airway fluid from patients with moderate to severe COPD and whether it could be used to compare inflammation in this condition with that in asthma. An initial reproducibility study was undertaken. Sputum was induced twice in 13 patients with severe COPD at a 14-d interval. Total and differential cell counts were carried out and were found to be reproducible over this period. Sputum was then induced in 14 patients with COPD, 23 patients with asthma, 12 healthy cigarette smokers, and 16 normal nonsmoking control subjects. We found a significant increase in neutrophils and increased concentrations of tumor necrosis factor-alpha (TNF alpha) and interleukin-8 (IL-8) in the patients with COPD compared with the smoking and nonsmoking control subjects. Interleukin-8, but not TNF alpha, was significantly higher in the COPD group than in the asthmatic group. We conclude that the cytokines TNF alpha and IL-8 may be involved in the inflammation in COPD.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Smoking-dependent reprogramming of alveolar macrophage polarization: implication for pathogenesis of chronic obstructive pulmonary disease.

            When exposed to a specific microenvironment, macrophages acquire either M1- or M2-polarized phenotypes associated with inflammation and tissue remodeling, respectively. Alveolar macrophages (AM) directly interact with environmental stimuli such as cigarette smoke, the major risk factor for chronic obstructive pulmonary disease (COPD), a disease characterized by lung inflammation and remodeling. Transcriptional profiling of AM obtained by bronchoalveolar lavage of 24 healthy nonsmokers, 34 healthy smokers, and 12 COPD smokers was performed to test the hypothesis whether smoking alters AM polarization, resulting in a disease-relevant activation phenotype. The analysis revealed that AM of healthy smokers exhibited a unique polarization pattern characterized by substantial suppression of M1-related inflammatory/immune genes and induction of genes associated with various M2-polarization programs relevant to tissue remodeling and immunoregulation. Such reciprocal changes progressed with the development of COPD, with M1-related gene expression being most dramatically down-regulated (p < 0.0001 vs healthy nonsmokers, p < 0.002 vs healthy smokers). Results were confirmed with TaqMan real-time PCR and flow cytometry. Among progressively down-regulated M1-related genes were those encoding type I chemokines CXCL9, CXCL10, CXCL11, and CCL5. Progressive activation of M2-related program was characterized by induction of tissue remodeling and immunoregulatory genes such as matrix metalloproteinase (MMP)2, MMP7, and adenosine A3 receptor (ADORA3). Principal component analysis revealed that differential expression of polarization-related genes has substantial contribution to global AM phenotypes associated with smoking and COPD. In summary, the data provide transcriptome-based evidence that AM likely contribute to COPD pathogenesis in a noninflammatory manner due to their smoking-induced reprogramming toward M1-deactivated, partially M2-polarized macrophages.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Increased expression of transforming growth factor-beta1 in small airway epithelium from tobacco smokers and patients with chronic obstructive pulmonary disease (COPD).

              Tobacco smoke is believed to cause small airway disease and then chronic obstructive pulmonary disease (COPD), but the molecular mechanisms by which small airway obstruction occurs remain unknown. To study the gene expression levels of transforming growth factor (TGF)-beta1, a potent fibrogenic factor, in small airway epithelium from smokers and patients with COPD, we harvested highly pure samples of epithelial cells from small airways under direct vision by using an ultrathin bronchofiberscope BF-2.7T (outer diameter 2.7 mm with a biopsy channel of 0.8 mm in diameter). The expression levels of TGF-beta1 were evaluated by reverse transcription-polymerase chain reaction (RT-PCR). The mRNA levels of TGF-beta1 corrected by beta-actin transcripts were significantly higher in the smoking group and patients with COPD than those in nonsmokers (p < 0.01). Furthermore, among smokers and patients with COPD, TGF-beta1 mRNA levels correlated positively with the extent of smoking history (pack-years) and the degree of small airway obstruction as assessed by measurements of flow-volume curves. Immunocytochemistry of the cells demonstrated more intense stainings for TGF-beta1 in samples from smokers and patients with COPD than from nonsmokers. Spontaneously released immunoreactive TGF-beta1 levels from cultured epithelial cells were more elevated in subjects with a history of smoking and patients with COPD than in nonsmokers. Our study showed a close link between smoking and expression of TGF-beta1 in small airways. Our results also suggested that small airway epithelial cells might be involved in obstructive changes found in smokers and patients with COPD.
                Bookmark

                Author and article information

                Contributors
                maryantunes@gmail.com
                soraiafisio@gmail.com
                fernanda_fcruz@yahoo.com.br
                anaclarinh_@hotmail.com
                mlopes0811@gmail.com
                elgabandeira@gmail.com
                priscillachristinaolsen@gmail.com
                bldiaz@biof.ufrj.br
                cmtakiya@gmail.com
                isalira@ufrj.br
                nn_rocha@hotmail.com
                vcapelozzi@lim05.fm.usp.br
                deboraxisto@gmail.com
                daniel.weiss@med.uvm.edu
                mmorales@biof.ufrj.br
                prmrocco@gmail.com
                Journal
                Respir Res
                Respiratory Research
                BioMed Central (London )
                1465-9921
                1465-993X
                3 October 2014
                3 October 2014
                2014
                : 15
                : 1
                : 118
                Affiliations
                [ ]Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Centro de Ciências da Saúde, Federal University of Rio de Janeiro, Avenida Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão – 21941-902, Rio de Janeiro, RJ Brazil
                [ ]Laboratory of Cellular and Molecular Physiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
                [ ]Laboratory of Inflammation, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
                [ ]Laboratory of Cellular Pathology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
                [ ]Laboratory of Cellular and Molecular Cardiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
                [ ]Fluminense Federal University, Niteroi, Rio de Janeiro Brazil
                [ ]Department of Pathology, University of São Paulo, São Paulo, Brazil
                [ ]Department of Medicine, University of Vermont, Vermont, USA
                Article
                118
                10.1186/s12931-014-0118-x
                4189723
                25272959
                d287f56e-10c3-458d-abfe-c9a69a8797d4
                © Antunes et al.; licensee BioMed Central Ltd. 2014

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 20 July 2014
                : 25 September 2014
                Categories
                Research
                Custom metadata
                © The Author(s) 2014

                Respiratory medicine
                elastase,emphysema,remodeling,macrophage,mesenchymal stromal cells
                Respiratory medicine
                elastase, emphysema, remodeling, macrophage, mesenchymal stromal cells

                Comments

                Comment on this article