2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Molten salt-assisted synthesis of nitrogen-vacancy crystalline graphitic carbon nitride with tunable band structures for efficient photocatalytic overall water splitting

      , , ,
      Chemical Engineering Journal
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: not found
          • Article: not found

          Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting

            Overall water splitting based on particulate photocatalysts is an easily constructed and cost-effective technology for the conversion of abundant solar energy into clean and renewable hydrogen energy on a large scale. Overall water splitting based on particulate photocatalysts is an easily constructed and cost-effective technology for the conversion of abundant solar energy into clean and renewable hydrogen energy on a large scale. This promising technology can be achieved in a one-step excitation system using a single photocatalyst or via a Z-scheme process based on a pair of photocatalysts. Ideally, such photocatalysis will proceed with charge separation and transport unaffected by recombination and trapping, and surface catalytic processes will not involve undesirable reactions. This review summarizes the basics of overall water splitting via both one-step excitation and Z-scheme processes, with a focus on standard methods of determining photocatalytic performance. Various surface engineering strategies applied to photocatalysts, such as cocatalyst loading, surface morphology control, surface modification and surface phase junctions, have been developed to allow efficient one-step excitation overall water splitting. In addition, numerous visible-light-responsive photocatalysts have been successfully utilized as H 2 -evolution or O 2 -evolution photocatalysts in Z-scheme overall water splitting. Prototype particulate immobilization systems with photocatalytic performances comparable to or drastically higher than those of particle suspension systems suggest the exciting possibility of the large-scale production of low-cost renewable solar hydrogen.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Single-Atom Pt as Co-Catalyst for Enhanced Photocatalytic H2 Evolution

              Isolated single-atom platinum (Pt) embedded in the sub-nanoporosity of 2D g-C3 N4 as a new form of co-catalyst is reported. The highly stable single-atom co-catalyst maximizes the atom efficiency and alters the surface trap states of g-C3 N4 , leading to significantly enhanced photocatalytic H2 evolution activity, 8.6 times higher than that of Pt nanoparticles and up to 50 times that for bare g-C3 N4 .
                Bookmark

                Author and article information

                Journal
                Chemical Engineering Journal
                Chemical Engineering Journal
                Elsevier BV
                13858947
                February 2023
                February 2023
                : 454
                : 140123
                Article
                10.1016/j.cej.2022.140123
                d2897cf6-575d-4222-a788-37c2104ef76f
                © 2023

                https://www.elsevier.com/tdm/userlicense/1.0/

                https://doi.org/10.15223/policy-017

                https://doi.org/10.15223/policy-037

                https://doi.org/10.15223/policy-012

                https://doi.org/10.15223/policy-029

                https://doi.org/10.15223/policy-004

                History

                Comments

                Comment on this article