31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Mo- and W-dichalcogenide compounds have a two-dimensional monolayer form that differs from graphene in an important respect: it can potentially have more than one crystal structure. Some of these monolayers exhibit tantalizing hints of a poorly understood structural metal-to-insulator transition with the possibility of long metastable lifetimes. If controllable, such a transition could bring an exciting new application space to monolayer materials beyond graphene. Here we discover that mechanical deformations provide a route to switching thermodynamic stability between a semiconducting and a metallic crystal structure in these monolayer materials. Based on state-of-the-art density functional and hybrid Hartree-Fock/density functional calculations including vibrational energy corrections, we discover that MoTe2 is an excellent candidate phase change material. We identify a range from 0.3 to 3% for the tensile strains required to transform MoTe2 under uniaxial conditions at room temperature. The potential for mechanical phase transitions is predicted for all six studied compounds.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: not found
          • Article: not found

          Generalized Gradient Approximation Made Simple

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set

              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Atomically thin MoS2: A new direct-gap semiconductor

              The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N = 1, 2, ... 6 S-Mo-S monolayers have been investigated by optical spectroscopy. Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure. With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 0.6 eV. This leads to a crossover to a direct-gap material in the limit of the single monolayer. Unlike the bulk material, the MoS2 monolayer emits light strongly. The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 1000 compared with the bulk material.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nature communications
                2041-1723
                2041-1723
                2014
                : 5
                Affiliations
                [1 ] Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA.
                [2 ] 1] Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, USA [2] Department of Applied Physics, Stanford University, Stanford, California 94305, USA.
                Article
                ncomms5214
                10.1038/ncomms5214
                24981779
                d28d0069-32c7-411c-9507-83c31f1e0623
                History

                Comments

                Comment on this article