15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Altered Prefrontal Blood Flow Related With Mild Cognitive Impairment in Parkinson's Disease: A Longitudinal Study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Cognitive impairment is a common non-motor symptom in Parkinson's disease (PD), with executive dysfunction being an initial manifestation. We aimed to investigate whether and how longitudinal changes in the prefrontal perfusion correlate with mild cognitive impairment (MCI) in patients with PD. We recruited 49 patients with PD with normal cognition and 37 matched healthy control subjects (HCs). Patients with PD completed arterial spin labeling MRI (ASL–MRI) scans and a comprehensive battery of neuropsychological assessments at baseline (V0) and 2-year follow-up (V1). HCs completed similar ASL–MRI scans and neuropsychological assessments at baseline. At V1, 10 patients with PD progressed to MCI (converters) and 39 patients remained cognitively normal (non-converters). We examined differences in the cerebral blood flow (CBF) derived from ASL–MRI and neuropsychological measures (a) between patients with PD and HCs at V0 (effect of the disease), (b) between V1 and V0 in patients with PD (effect of the disease progression), and (c) between converters and non-converters (effect of the MCI progression) using t-tests or ANOVAs with false discovery rate correction. We further analyzed the relationship between longitudinal CBF and neuropsychological changes using multivariate regression models with false discovery rate correction, focusing on executive functions. At V0, no group difference was found in prefrontal CBF between patients with PD and HCs, although patients with PD showed worse performances on executive function. At V1, patients with PD showed significantly reduced CBF in multiple prefrontal regions, including the bilateral lateral orbitofrontal, medial orbitofrontal, middle frontal, inferior frontal, superior frontal, caudal anterior cingulate, and rostral anterior cingulate. More importantly, converters showed a more significant CBF reduction in the left lateral orbitofrontal cortex than non-converters. From V0 to V1, the prolonged completion time of Trail Making Test-B (TMT-B) negatively correlated with longitudinal CBF reduction in the right caudal anterior cingulate cortex. The decreased accuracy of the Stroop Color-Word Test positively correlated with longitudinal CBF reduction in the left medial orbitofrontal cortex. In addition, at V1, the completion time of TMT-B negatively correlated with CBF in the left caudal anterior cingulate cortex. Our findings suggest that longitudinal CBF reduction in the prefrontal cortex might impact cognitive functions (especially executive functions) at the early stages of PD.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          MDS clinical diagnostic criteria for Parkinson's disease.

          This document presents the Movement Disorder Society Clinical Diagnostic Criteria for Parkinson's disease (PD). The Movement Disorder Society PD Criteria are intended for use in clinical research but also may be used to guide clinical diagnosis. The benchmark for these criteria is expert clinical diagnosis; the criteria aim to systematize the diagnostic process, to make it reproducible across centers and applicable by clinicians with less expertise in PD diagnosis. Although motor abnormalities remain central, increasing recognition has been given to nonmotor manifestations; these are incorporated into both the current criteria and particularly into separate criteria for prodromal PD. Similar to previous criteria, the Movement Disorder Society PD Criteria retain motor parkinsonism as the core feature of the disease, defined as bradykinesia plus rest tremor or rigidity. Explicit instructions for defining these cardinal features are included. After documentation of parkinsonism, determination of PD as the cause of parkinsonism relies on three categories of diagnostic features: absolute exclusion criteria (which rule out PD), red flags (which must be counterbalanced by additional supportive criteria to allow diagnosis of PD), and supportive criteria (positive features that increase confidence of the PD diagnosis). Two levels of certainty are delineated: clinically established PD (maximizing specificity at the expense of reduced sensitivity) and probable PD (which balances sensitivity and specificity). The Movement Disorder Society criteria retain elements proven valuable in previous criteria and omit aspects that are no longer justified, thereby encapsulating diagnosis according to current knowledge. As understanding of PD expands, the Movement Disorder Society criteria will need continuous revision to accommodate these advances.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cortical surface-based analysis. I. Segmentation and surface reconstruction.

            Several properties of the cerebral cortex, including its columnar and laminar organization, as well as the topographic organization of cortical areas, can only be properly understood in the context of the intrinsic two-dimensional structure of the cortical surface. In order to study such cortical properties in humans, it is necessary to obtain an accurate and explicit representation of the cortical surface in individual subjects. Here we describe a set of automated procedures for obtaining accurate reconstructions of the cortical surface, which have been applied to data from more than 100 subjects, requiring little or no manual intervention. Automated routines for unfolding and flattening the cortical surface are described in a companion paper. These procedures allow for the routine use of cortical surface-based analysis and visualization methods in functional brain imaging. Copyright 1999 Academic Press.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain.

              We present a technique for automatically assigning a neuroanatomical label to each voxel in an MRI volume based on probabilistic information automatically estimated from a manually labeled training set. In contrast to existing segmentation procedures that only label a small number of tissue classes, the current method assigns one of 37 labels to each voxel, including left and right caudate, putamen, pallidum, thalamus, lateral ventricles, hippocampus, and amygdala. The classification technique employs a registration procedure that is robust to anatomical variability, including the ventricular enlargement typically associated with neurological diseases and aging. The technique is shown to be comparable in accuracy to manual labeling, and of sufficient sensitivity to robustly detect changes in the volume of noncortical structures that presage the onset of probable Alzheimer's disease.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Aging Neurosci
                Front Aging Neurosci
                Front. Aging Neurosci.
                Frontiers in Aging Neuroscience
                Frontiers Media S.A.
                1663-4365
                11 July 2022
                2022
                : 14
                : 896191
                Affiliations
                [1] 1Department of Radiology, Zhongshan Hospital, Fudan University , Shanghai, China
                [2] 2Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences , Shanghai, China
                [3] 3Department of Neurology, XiaMen Branch, Zhongshan Hospital, Fudan University , Xiamen, China
                [4] 4Department of Neurology, Zhongshan Hospital, Fudan University , Shanghai, China
                Author notes

                Edited by: Danling Wang, University of South China, China

                Reviewed by: Huifang Shang, Sichuan University, China; Ilya Nasrallah, University of Pennsylvania, United States; Shigehiko Ogoh, Toyo University, Japan

                *Correspondence: Zheng Ye yez@ 123456ion.ac.cn

                This article was submitted to Parkinson's Disease and Aging-related Movement Disorders, a section of the journal Frontiers in Aging Neuroscience

                †These authors have contributed equally to this work

                Article
                10.3389/fnagi.2022.896191
                9309429
                35898326
                d28d01eb-a755-4365-b870-b080bf190cb5
                Copyright © 2022 Wang, Zhang, Zhou, Jia, Li, Liu, Ye and Jin.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 14 March 2022
                : 25 May 2022
                Page count
                Figures: 2, Tables: 3, Equations: 0, References: 51, Pages: 10, Words: 7654
                Funding
                Funded by: National Natural Science Foundation of China, doi 10.13039/501100001809;
                Funded by: State Key Laboratory of Neuroscience, doi 10.13039/501100011256;
                Categories
                Aging Neuroscience
                Original Research

                Neurosciences
                parkinson's disease,mild cognitive impairment,arterial spin labeling,longitudinal,prefrontal cortex

                Comments

                Comment on this article