18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rosiglitazone Affects Nitric Oxide Synthases and Improves Renal Outcome in a Rat Model of Severe Ischemia/Reperfusion Injury

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background. Nitric oxide (NO)-signal transduction plays an important role in renal ischemia/reperfusion (I/R) injury. NO produced by endothelial NO-synthase (eNOS) has protective functions whereas NO from inducible NO-synthase (iNOS) induces impairment. Rosiglitazone (RGZ), a peroxisome proliferator-activated receptor (PPAR)- γ agonist exerted beneficial effects after renal I/R injury, so we investigated whether this might be causally linked with NOS imbalance. Methods. RGZ (5 mg/kg) was administered i.p. to SD-rats (f) subjected to bilateral renal ischemia (60 min). Following 24 h of reperfusion, inulin- and PAH-clearance as well as PAH-net secretion were determined. Morphological alterations were graded by histopathological scoring. Plasma NO x-production was measured. eNOS and iNOS expression was analyzed by qPCR. Cleaved caspase 3 (CC3) was determined as an apoptosis indicator and ED1 as a marker of macrophage infiltration in renal tissue. Results. RGZ improves renal function after renal I/R injury (PAH-/inulin-clearance, PAH-net secretion) and reduces histomorphological injury. Additionally, RGZ reduces NO x plasma levels, ED-1 positive cell infiltration and CC3 expression. iNOS-mRNA is reduced whereas eNOS-mRNA is increased by RGZ. Conclusion. RGZ has protective properties after severe renal I/R injury. Alterations of the NO pathway regarding eNOS and iNOS could be an explanation of the underlying mechanism of RGZ protection in renal I/R injury.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: not found
          • Article: not found

          Recent advances in the pathophysiology of ischemic acute renal failure.

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Acute renal failure: definitions, diagnosis, pathogenesis, and therapy

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Acute renal failure: definitions, diagnosis, pathogenesis, and therapy.

              Acute renal failure (ARF), characterized by sudden loss of the ability of the kidneys to excrete wastes, concentrate urine, conserve electrolytes, and maintain fluid balance, is a frequent clinical problem, particularly in the intensive care unit, where it is associated with a mortality of between 50% and 80%. In this review, the epidemiology and pathophysiology of ARF are discussed, including the vascular, tubular, and inflammatory perturbations. The clinical evaluation of ARF and implications for potential future therapies to decrease the high mortality are described.
                Bookmark

                Author and article information

                Journal
                PPAR Res
                PPAR
                PPAR Research
                Hindawi Publishing Corporation
                1687-4757
                1687-4765
                2012
                15 February 2012
                : 2012
                : 219319
                Affiliations
                1Medizinische Klinik und Poliklinik I, Nephrologie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
                2Klinik und Poliklinik für Anästhesiologie, Universitätsklinikum Würzburg, 97080 Würzburg, Germany
                3Klinik für Anästhesie und Operative Intensivmedizin, Universitätsklinikum Halle (Saale), 06120 Halle (Saale), Germany
                Author notes

                Academic Editor: Paul Drew

                Article
                10.1155/2012/219319
                3289925
                22448163
                d28fd993-7db6-4a61-8985-726541847127
                Copyright © 2012 Boris Betz et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 20 September 2011
                : 3 November 2011
                Categories
                Research Article

                Biochemistry
                Biochemistry

                Comments

                Comment on this article