+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combination of Chemically-Characterized Essential Oils from Eucalyptus polybractea, Ormenis mixta, and Lavandula burnatii: Optimization of a New Complete Antibacterial Formulation Using Simplex-Centroid Mixture Design


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          This study aims to identify the volatile profile of three essential oils obtained from Eucalyptus polybractea cryptonifera (EPEO), Ormenis mixta (OMEO), and Lavandula burnatii briquet (LBEO) and to examine their combined antibacterial activity that affords the optimal inhibitory ability against S. aureus and E. coli using simplex-centroid mixture design and checkerboard assay. Essential oils (EOs) were isolated by hydrodistillation and characterized using gas chromatography-mass spectrometry (GC-MS) and gas chromatography coupled with flame-ionization detector (GC-FID). The antibacterial activity was performed using disc diffusion and microdilution assays. The chemical analysis revealed that 1,8-cineole (23.75%), p-cymene (22.47%), and α-pinene (11.20%) and p-menthane-1,8-diol (18.19%), α-pinene (10.81%), and D-germacrene (9.17%) were the main components detected in E. polybractea and O. mixta EOs, respectively. However, L. burnatii EO was mainly represented by linalool (24.40%) and linalyl acetate (18.68%). The EPEO, LBEO, and OMEO had a strong antibacterial effect on S. aureus with minimal inhibitory concentrations (MICs) values ranging from 0.25 to 0.5% (v/v). Furthermore, the combination of 1/2048 MIC EPEO + 1/4 MIC LBEO showed a synergistic antibacterial effect on S. aureus with a FIC index of 0.25, while the formulation of 1/4 MIC EPEO + 1/4 MIC OMEO demonstrated an antibacterial synergistic activity on E. coli with a FIC index of 0.5. Moreover, the simplex-centroid mixture design reported that the most effective combinations on E. coli and S. aureus correspond to 32%/28%/40% and 35%/30%/35% of E. polybractea, O. mixta, and L. burnatii, respectively. Presented information highlights the action of antibacterial formulations of these EOs and suggests their potential applications as alternatives to commercialized drugs to contract the development of bacteria causing serious infections and food deterioration.

          Related collections

          Most cited references107

          • Record: found
          • Abstract: found
          • Article: not found

          Essential oils: their antibacterial properties and potential applications in foods--a review.

          In vitro studies have demonstrated antibacterial activity of essential oils (EOs) against Listeria monocytogenes, Salmonella typhimurium, Escherichia coli O157:H7, Shigella dysenteria, Bacillus cereus and Staphylococcus aureus at levels between 0.2 and 10 microl ml(-1). Gram-negative organisms are slightly less susceptible than gram-positive bacteria. A number of EO components has been identified as effective antibacterials, e.g. carvacrol, thymol, eugenol, perillaldehyde, cinnamaldehyde and cinnamic acid, having minimum inhibitory concentrations (MICs) of 0.05-5 microl ml(-1) in vitro. A higher concentration is needed to achieve the same effect in foods. Studies with fresh meat, meat products, fish, milk, dairy products, vegetables, fruit and cooked rice have shown that the concentration needed to achieve a significant antibacterial effect is around 0.5-20 microl g(-1) in foods and about 0.1-10 microl ml(-1) in solutions for washing fruit and vegetables. EOs comprise a large number of components and it is likely that their mode of action involves several targets in the bacterial cell. The hydrophobicity of EOs enables them to partition in the lipids of the cell membrane and mitochondria, rendering them permeable and leading to leakage of cell contents. Physical conditions that improve the action of EOs are low pH, low temperature and low oxygen levels. Synergism has been observed between carvacrol and its precursor p-cymene and between cinnamaldehyde and eugenol. Synergy between EO components and mild preservation methods has also been observed. Some EO components are legally registered flavourings in the EU and the USA. Undesirable organoleptic effects can be limited by careful selection of EOs according to the type of food.
            • Record: found
            • Abstract: found
            • Article: not found
            Is Open Access

            Essential Oils in Food Preservation: Mode of Action, Synergies, and Interactions with Food Matrix Components

            Essential oils are aromatic and volatile liquids extracted from plants. The chemicals in essential oils are secondary metabolites, which play an important role in plant defense as they often possess antimicrobial properties. The interest in essential oils and their application in food preservation has been amplified in recent years by an increasingly negative consumer perception of synthetic preservatives. Furthermore, food-borne diseases are a growing public health problem worldwide, calling for more effective preservation strategies. The antibacterial properties of essential oils and their constituents have been documented extensively. Pioneering work has also elucidated the mode of action of a few essential oil constituents, but detailed knowledge about most of the compounds’ mode of action is still lacking. This knowledge is particularly important to predict their effect on different microorganisms, how they interact with food matrix components, and how they work in combination with other antimicrobial compounds. The main obstacle for using essential oil constituents as food preservatives is that they are most often not potent enough as single components, and they cause negative organoleptic effects when added in sufficient amounts to provide an antimicrobial effect. Exploiting synergies between several compounds has been suggested as a solution to this problem. However, little is known about which interactions lead to synergistic, additive, or antagonistic effects. Such knowledge could contribute to design of new and more potent antimicrobial blends, and to understand the interplay between the constituents of crude essential oils. The purpose of this review is to provide an overview of current knowledge about the antibacterial properties and antibacterial mode of action of essential oils and their constituents, and to identify research avenues that can facilitate implementation of essential oils as natural preservatives in foods.
              • Record: found
              • Abstract: found
              • Article: not found

              The phenolic hydroxyl group of carvacrol is essential for action against the food-borne pathogen Bacillus cereus.

              The natural antimicrobial compound carvacrol shows a high preference for hydrophobic phases. The partition coefficients of carvacrol in both octanol-water and liposome-buffer phases were determined (3.64 and 3.26, respectively). Addition of carvacrol to a liposomal suspension resulted in an expansion of the liposomal membrane. Maximum expansion was observed after the addition of 0.50 micromol of carvacrol/mg of L-alpha-phosphatidylethanolamine. Cymene, a biological precursor of carvacrol which lacks a hydroxyl group, was found to have a higher preference for liposomal membranes, thereby causing more expansion. The effect of cymene on the membrane potential was less pronounced than the effect of carvacrol. The pH gradient and ATP pools were not affected by cymene. Measurement of the antimicrobial activities of compounds similar to carvacrol (e.g., thymol, cymene, menthol, and carvacrol methyl ester) showed that the hydroxyl group of this compound and the presence of a system of delocalized electrons are important for the antimicrobial activity of carvacrol. Based on this study, we hypothesize that carvacrol destabilizes the cytoplasmic membrane and, in addition, acts as a proton exchanger, thereby reducing the pH gradient across the cytoplasmic membrane. The resulting collapse of the proton motive force and depletion of the ATP pool eventually lead to cell death.

                Author and article information

                Adv Pharmacol Pharm Sci
                Adv Pharmacol Pharm Sci
                Advances in Pharmacological and Pharmaceutical Sciences
                21 August 2023
                : 2023
                : 5593350
                1Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Imouzzer Road, Fez, Morocco
                2Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30 000, Morocco
                3Laboratory of Applied Organic Chemistry, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Road of Imouzzer, Fez, Morocco
                Author notes

                Academic Editor: Kuldeep Singh

                Author information
                Copyright © 2023 Mohamed Jeddi et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                : 20 June 2023
                : 3 August 2023
                : 9 August 2023
                Research Article


                Comment on this article