62
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rapid, point‐of‐care antigen and molecular‐based tests for diagnosis of SARS‐CoV‐2 infection

      systematic-review

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) and the resulting COVID‐19 pandemic present important diagnostic challenges. Several diagnostic strategies are available to identify or rule out current infection, identify people in need of care escalation, or to test for past infection and immune response. Point‐of‐care antigen and molecular tests to detect current SARS‐CoV‐2 infection have the potential to allow earlier detection and isolation of confirmed cases compared to laboratory‐based diagnostic methods, with the aim of reducing household and community transmission.

          Objectives

          To assess the diagnostic accuracy of point‐of‐care antigen and molecular‐based tests to determine if a person presenting in the community or in primary or secondary care has current SARS‐CoV‐2 infection.

          Search methods

          On 25 May 2020 we undertook electronic searches in the Cochrane COVID‐19 Study Register and the COVID‐19 Living Evidence Database from the University of Bern, which is updated daily with published articles from PubMed and Embase and with preprints from medRxiv and bioRxiv. In addition, we checked repositories of COVID‐19 publications. We did not apply any language restrictions.

          Selection criteria

          We included studies of people with suspected current SARS‐CoV‐2 infection, known to have, or not to have SARS‐CoV‐2 infection, or where tests were used to screen for infection. We included test accuracy studies of any design that evaluated antigen or molecular tests suitable for a point‐of‐care setting (minimal equipment, sample preparation, and biosafety requirements, with results available within two hours of sample collection). We included all reference standards to define the presence or absence of SARS‐CoV‐2 (including reverse transcription polymerase chain reaction (RT‐PCR) tests and established clinical diagnostic criteria).

          Data collection and analysis

          Two review authors independently screened studies and resolved any disagreements by discussion with a third review author. One review author independently extracted study characteristics, which were checked by a second review author. Two review authors independently extracted 2x2 contingency table data and assessed risk of bias and applicability of the studies using the QUADAS‐2 tool. We present sensitivity and specificity, with 95% confidence intervals (CIs), for each test using paired forest plots. We pooled data using the bivariate hierarchical model separately for antigen and molecular‐based tests, with simplifications when few studies were available. We tabulated available data by test manufacturer.

          Main results

          We included 22 publications reporting on a total of 18 study cohorts with 3198 unique samples, of which 1775 had confirmed SARS‐CoV‐2 infection. Ten studies took place in North America, two in South America, four in Europe, one in China and one was conducted internationally. We identified data for eight commercial tests (four antigen and four molecular) and one in‐house antigen test. Five of the studies included were only available as preprints.

          We did not find any studies at low risk of bias for all quality domains and had concerns about applicability of results across all studies. We judged patient selection to be at high risk of bias in 50% of the studies because of deliberate over‐sampling of samples with confirmed COVID‐19 infection and unclear in seven out of 18 studies because of poor reporting. Sixteen (89%) studies used only a single, negative RT‐PCR to confirm the absence of COVID‐19 infection, risking missing infection. There was a lack of information on blinding of index test (n = 11), and around participant exclusions from analyses (n = 10). We did not observe differences in methodological quality between antigen and molecular test evaluations.

          Antigen tests

          Sensitivity varied considerably across studies (from 0% to 94%): the average sensitivity was 56.2% (95% CI 29.5 to 79.8%) and average specificity was 99.5% (95% CI 98.1% to 99.9%; based on 8 evaluations in 5 studies on 943 samples). Data for individual antigen tests were limited with no more than two studies for any test.

          Rapid molecular assays

          Sensitivity showed less variation compared to antigen tests (from 68% to 100%), average sensitivity was 95.2% (95% CI 86.7% to 98.3%) and specificity 98.9% (95% CI 97.3% to 99.5%) based on 13 evaluations in 11 studies of on 2255 samples. Predicted values based on a hypothetical cohort of 1000 people with suspected COVID‐19 infection (with a prevalence of 10%) result in 105 positive test results including 10 false positives (positive predictive value 90%), and 895 negative results including 5 false negatives (negative predictive value 99%).

          Individual tests

          We calculated pooled results of individual tests for ID NOW (Abbott Laboratories) (5 evaluations) and Xpert Xpress (Cepheid Inc) (6 evaluations). Summary sensitivity for the Xpert Xpress assay (99.4%, 95% CI 98.0% to 99.8%) was 22.6 (95% CI 18.8 to 26.3) percentage points higher than that of ID NOW (76.8%, (95% CI 72.9% to 80.3%), whilst the specificity of Xpert Xpress (96.8%, 95% CI 90.6% to 99.0%) was marginally lower than ID NOW (99.6%, 95% CI 98.4% to 99.9%; a difference of −2.8% (95% CI −6.4 to 0.8))

          Authors' conclusions

          This review identifies early‐stage evaluations of point‐of‐care tests for detecting SARS‐CoV‐2 infection, largely based on remnant laboratory samples. The findings currently have limited applicability, as we are uncertain whether tests will perform in the same way in clinical practice, and according to symptoms of COVID‐19, duration of symptoms, or in asymptomatic people. Rapid tests have the potential to be used to inform triage of RT‐PCR use, allowing earlier detection of those testing positive, but the evidence currently is not strong enough to determine how useful they are in clinical practice.

          Prospective and comparative evaluations of rapid tests for COVID‐19 infection in clinically relevant settings are urgently needed. Studies should recruit consecutive series of eligible participants, including both those presenting for testing due to symptoms and asymptomatic people who may have come into contact with confirmed cases. Studies should clearly describe symptomatic status and document time from symptom onset or time since exposure. Point‐of‐care tests must be conducted on samples according to manufacturer instructions for use and be conducted at the point of care. Any future research study report should conform to the Standards for Reporting of Diagnostic Accuracy (STARD) guideline.

          Plain language summary

          How accurate are rapid tests, performed during a health‐care visit (point‐of‐care), for diagnosing COVID‐19?

          Why is this question important?

          People with suspected COVID‐19 need to know quickly whether they are infected, so that they can self‐isolate, receive treatment, and inform close contacts. Currently, COVID‐19 infection is confirmed by sending away samples, taken from the nose and throat, for laboratory testing. The laboratory test, called RT‐PCR, requires specialist equipment, may require repeat healthcare visits, and typically takes at least 24 hours to produce a result.

          Rapid point‐of‐care tests can provide a result ‘while you wait’, ideally within two hours of providing a sample. This could help people isolate early and reduce the spread of infection.

          What did we want to find out?

          We were interested in two types of rapid point‐of‐care tests, antigen and molecular tests. Antigen tests identify proteins on the virus, often using disposable devices. Molecular tests detect the virus’s genetic material, using small portable or table‐top devices. Both test the same nose or throat samples as RT‐PCR tests.

          We wanted to know whether rapid point‐of‐care antigen and molecular tests are accurate enough to replace RT‐PCR for diagnosing infection, or to select people for further testing if they have a negative result.

          What did we do?

          We looked for studies that measured the accuracy of rapid point‐of‐care tests compared with RT‐PCR tests to detect current COVID‐19 infection. Studies could assess any rapid antigen or molecular point‐of‐care test, compared with a reference standard test. The reference standard is the best available method for diagnosing the infection; we considered RT‐PCR test results and clinically defined COVID‐19 as reference tests. People could be tested in hospital or the community. Studies could test people with or without symptoms.

          Tests had to use minimal equipment, be performed safely without risking infection from the sample, and have results available within two hours of the sample being collected. Tests could be used in small laboratories or wherever the patient is (in primary care, urgent care facilities, or in hospital).

          How did studies assess diagnostic test accuracy?

          Studies tested participants with the rapid point‐of‐care tests. Participants were classified as known to have – and not to have ‐ COVID‐19, by RT‐PCR in all studies. Studies then identified false positive and false negative errors in the point‐of‐care test results, compared to RT‐PCR. False positive tests incorrectly identified COVID‐19 when it was not present, potentially leading to unnecessary self‐isolation and further testing. False negatives missed COVID‐19 when it was present, risking delayed self‐isolation and treatment, and spread of infection.

          What we found

          We found 18 relevant studies. Ten studies took place in North America, four in Europe, two in South America, one in China and one in multiple countries.

          Nine studies deliberately included a high percentage of people with confirmed COVID‐19 or included only people with COVID‐19. Fourteen studies did not provide any information about the people providing the samples for testing and 12 did not provide any information about where people were tested.

          None of the studies reported includedsamples from people without symptoms.

          Main results

          Five studies reported eight evaluations of five different antigen tests. Overall, there was considerable variation between the results of the antigen tests in how well they detected COVID‐19 infection. Tests gave false positive results in less than 1% of samples.

          Thirteen evaluations of four different molecular tests correctly detected an average of 95% of samples with COVID‐19 infection. Around 1% of samples gave false positive results.

          If 1000 people had molecular tests, and 100 (10%) of them really had COVID‐19:

          ‐ 105 people would test positive for COVID‐19. Of these, 10 people (10%) would not have COVID‐19 (false positive result).

          ‐ 895 people would test negative for COVID‐19. Of these, 5 people (1%) would actually have COVID‐19 (false negative result).

          We noted a large difference in COVID‐19 detection between the two most commonly evaluated molecular tests.

          How reliable were the results of the studies?

          Our confidence in the evidence is limited.

          ‐ Three‐quarters of studies did not follow the test manufacturers’ instructions, so may have found different results if they had.

          ‐ Often, studies did not use the most reliable methods or did not report enough information for us to judge their methods. This may have affected estimates of test accuracy, but it is impossible to identify by how much.

          ‐ A quarter of studies were published early online as ‘preprints’ and are included in the review. Preprints do not undergo the normal rigorous checks of published studies, so we are uncertain how reliable they are.

          What are the implications of this review?

          Studies provided little information about their participants, so it is not possible to tell if the results can be applied to people with no symptoms, mild symptoms, or who were hospitalised with COVID‐19. Accurate rapid tests would have the potential to select people for RT‐PCR testing or to be used where RT‐PCR is not available. However, the evidence currently is not strong enough and more studies are urgently needed to be able to say if these tests are good enough to be used in practice.

          How up‐to‐date is this review?

          This review includes evidence published up to 25 May 2020. Because new research is being published in this field, we will update this review soon.

          Related collections

          Most cited references108

          • Record: found
          • Abstract: found
          • Article: not found

          QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies.

          In 2003, the QUADAS tool for systematic reviews of diagnostic accuracy studies was developed. Experience, anecdotal reports, and feedback suggested areas for improvement; therefore, QUADAS-2 was developed. This tool comprises 4 domains: patient selection, index test, reference standard, and flow and timing. Each domain is assessed in terms of risk of bias, and the first 3 domains are also assessed in terms of concerns regarding applicability. Signalling questions are included to help judge risk of bias. The QUADAS-2 tool is applied in 4 phases: summarize the review question, tailor the tool and produce review-specific guidance, construct a flow diagram for the primary study, and judge bias and applicability. This tool will allow for more transparent rating of bias and applicability of primary diagnostic accuracy studies.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Complex Immune Dysregulation in COVID-19 Patients with Severe Respiratory Failure

            Summary Proper management of COVID-19 mandates better understanding of disease pathogenesis. The sudden clinical deterioration 7–8 days after initial symptom onset suggests that severe respiratory failure (SRF) in COVID-19 is driven by a unique pattern of immune dysfunction. We studied immune responses of 54 COVID-19 patients, 28 of whom had SRF. All patients with SRF displayed either macrophage activation syndrome (MAS) or very low human leukocyte antigen D related (HLA-DR) expression accompanied by profound depletion of CD4 lymphocytes, CD19 lymphocytes, and natural killer (NK) cells. Tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) production by circulating monocytes was sustained, a pattern distinct from bacterial sepsis or influenza. SARS-CoV-2 patient plasma inhibited HLA-DR expression, and this was partially restored by the IL-6 blocker Tocilizumab; off-label Tocilizumab treatment of patients was accompanied by increase in circulating lymphocytes. Thus, the unique pattern of immune dysregulation in severe COVID-19 is characterized by IL-6-mediated low HLA-DR expression and lymphopenia, associated with sustained cytokine production and hyper-inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Viral load dynamics and disease severity in patients infected with SARS-CoV-2 in Zhejiang province, China, January-March 2020: retrospective cohort study

              Abstract Objective To evaluate viral loads at different stages of disease progression in patients infected with the 2019 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) during the first four months of the epidemic in Zhejiang province, China. Design Retrospective cohort study. Setting A designated hospital for patients with covid-19 in Zhejiang province, China. Participants 96 consecutively admitted patients with laboratory confirmed SARS-CoV-2 infection: 22 with mild disease and 74 with severe disease. Data were collected from 19 January 2020 to 20 March 2020. Main outcome measures Ribonucleic acid (RNA) viral load measured in respiratory, stool, serum, and urine samples. Cycle threshold values, a measure of nucleic acid concentration, were plotted onto the standard curve constructed on the basis of the standard product. Epidemiological, clinical, and laboratory characteristics and treatment and outcomes data were obtained through data collection forms from electronic medical records, and the relation between clinical data and disease severity was analysed. Results 3497 respiratory, stool, serum, and urine samples were collected from patients after admission and evaluated for SARS-CoV-2 RNA viral load. Infection was confirmed in all patients by testing sputum and saliva samples. RNA was detected in the stool of 55 (59%) patients and in the serum of 39 (41%) patients. The urine sample from one patient was positive for SARS-CoV-2. The median duration of virus in stool (22 days, interquartile range 17-31 days) was significantly longer than in respiratory (18 days, 13-29 days; P=0.02) and serum samples (16 days, 11-21 days; P<0.001). The median duration of virus in the respiratory samples of patients with severe disease (21 days, 14-30 days) was significantly longer than in patients with mild disease (14 days, 10-21 days; P=0.04). In the mild group, the viral loads peaked in respiratory samples in the second week from disease onset, whereas viral load continued to be high during the third week in the severe group. Virus duration was longer in patients older than 60 years and in male patients. Conclusion The duration of SARS-CoV-2 is significantly longer in stool samples than in respiratory and serum samples, highlighting the need to strengthen the management of stool samples in the prevention and control of the epidemic, and the virus persists longer with higher load and peaks later in the respiratory tissue of patients with severe disease.
                Bookmark

                Author and article information

                Journal
                Cochrane Database Syst Rev
                Cochrane Database Syst Rev
                14651858
                10.1002/14651858
                The Cochrane Database of Systematic Reviews
                John Wiley & Sons, Ltd (Chichester, UK )
                1469-493X
                26 August 2020
                August 2020
                26 August 2020
                : 2020
                : 8
                : CD013705
                Affiliations
                deptTest Evaluation Research Group, Institute of Applied Health Research University of Birmingham BirminghamUK
                deptNIHR Birmingham Biomedical Research Centre University Hospitals Birmingham NHS Foundation Trust and University of Birmingham BirminghamUK
                FIND GenevaSwitzerland
                deptGlobal Malaria Programme World Health Organization GenevaSwitzerland
                deptDivision of Health Sciences, Warwick Medical School University of Warwick CoventryUK
                deptCochrane Netherlands Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University UtrechtNetherlands
                deptDepartment of Clinical Epidemiology, Biostatistics and Bioinformatics Amsterdam University Medical Centers, University of Amsterdam AmsterdamNetherlands
                deptMedical Library Amsterdam UMC, University of Amsterdam, Amsterdam Public Health AmsterdamNetherlands
                deptDepartment of Public Health and Primary Care KU Leuven LeuvenBelgium
                deptBiomarker and Test Evaluation Programme (BiTE) Amsterdam UMC, University of Amsterdam AmsterdamNetherlands
                Article
                CD013705 CD013705
                10.1002/14651858.CD013705
                8078202
                32845525
                d29fc579-14a5-4a66-b54d-4cafdc0823e7
                Copyright © 2020 The Authors. Cochrane Database of Systematic Reviews published by John Wiley & Sons, Ltd. on behalf of The Cochrane Collaboration.

                This is an open access article under the terms of the Creative Commons Attribution-Non-Commercial Licence, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.

                History
                Categories
                Diagnosis
                Infectious disease
                COVID-19

                Comments

                Comment on this article