100
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug repositioning: a machine-learning approach through data integration

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Existing computational methods for drug repositioning either rely only on the gene expression response of cell lines after treatment, or on drug-to-disease relationships, merging several information levels. However, the noisy nature of the gene expression and the scarcity of genomic data for many diseases are important limitations to such approaches. Here we focused on a drug-centered approach by predicting the therapeutic class of FDA-approved compounds, not considering data concerning the diseases. We propose a novel computational approach to predict drug repositioning based on state-of-the-art machine-learning algorithms. We have integrated multiple layers of information: i) on the distances of the drugs based on how similar are their chemical structures, ii) on how close are their targets within the protein-protein interaction network, and iii) on how correlated are the gene expression patterns after treatment. Our classifier reaches high accuracy levels (78%), allowing us to re-interpret the top misclassifications as re-classifications, after rigorous statistical evaluation. Efficient drug repurposing has the potential to significantly impact the whole field of drug development. The results presented here can significantly accelerate the translation into the clinics of known compounds for novel therapeutic uses.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Adjusting batch effects in microarray expression data using empirical Bayes methods.

          Non-biological experimental variation or "batch effects" are commonly observed across multiple batches of microarray experiments, often rendering the task of combining data from these batches difficult. The ability to combine microarray data sets is advantageous to researchers to increase statistical power to detect biological phenomena from studies where logistical considerations restrict sample size or in studies that require the sequential hybridization of arrays. In general, it is inappropriate to combine data sets without adjusting for batch effects. Methods have been proposed to filter batch effects from data, but these are often complicated and require large batch sizes ( > 25) to implement. Because the majority of microarray studies are conducted using much smaller sample sizes, existing methods are not sufficient. We propose parametric and non-parametric empirical Bayes frameworks for adjusting data for batch effects that is robust to outliers in small sample sizes and performs comparable to existing methods for large samples. We illustrate our methods using two example data sets and show that our methods are justifiable, easy to apply, and useful in practice. Software for our method is freely available at: http://biosun1.harvard.edu/complab/batch/.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease.

            To pursue a systematic approach to the discovery of functional connections among diseases, genetic perturbation, and drug action, we have created the first installment of a reference collection of gene-expression profiles from cultured human cells treated with bioactive small molecules, together with pattern-matching software to mine these data. We demonstrate that this "Connectivity Map" resource can be used to find connections among small molecules sharing a mechanism of action, chemicals and physiological processes, and diseases and drugs. These results indicate the feasibility of the approach and suggest the value of a large-scale community Connectivity Map project.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              affy--analysis of Affymetrix GeneChip data at the probe level.

              The processing of the Affymetrix GeneChip data has been a recent focus for data analysts. Alternatives to the original procedure have been proposed and some of these new methods are widely used. The affy package is an R package of functions and classes for the analysis of oligonucleotide arrays manufactured by Affymetrix. The package is currently in its second release, affy provides the user with extreme flexibility when carrying out an analysis and make it possible to access and manipulate probe intensity data. In this paper, we present the main classes and functions in the package and demonstrate how they can be used to process probe-level data. We also demonstrate the importance of probe-level analysis when using the Affymetrix GeneChip platform.
                Bookmark

                Author and article information

                Contributors
                Journal
                J Cheminform
                J Cheminform
                Journal of Cheminformatics
                BioMed Central
                1758-2946
                2013
                22 June 2013
                : 5
                : 30
                Affiliations
                [1 ]Department of Computer Science, University of Salerno, Salerno, Italy
                [2 ]Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
                [3 ]Research Unit of Molecular Medicine, University of Helsinki, Helsinki, Finland
                [4 ]Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
                [5 ]Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
                Article
                1758-2946-5-30
                10.1186/1758-2946-5-30
                3704944
                23800010
                d2b085ab-f59a-41b6-b537-657f71928b43
                Copyright © 2013 Napolitano et al.; licensee Chemistry Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 25 March 2013
                : 13 June 2013
                Categories
                Research Article

                Chemoinformatics
                drug repositioning,connectivity map,cmap,atc code,mode of action,machine learning,svm,integrative genomics,smiles,anthelmintics,antineoplastic,oxamniquine,niclosamide

                Comments

                Comment on this article