6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Capacity of recombinant gamma interferon to activate macrophages for Salmonella-killing activity.

      Infection and Immunity
      Animals, Catalase, physiology, Free Radicals, Hydrogen Peroxide, biosynthesis, Interferon-gamma, pharmacology, Kinetics, Macrophage Activation, drug effects, Macrophages, immunology, microbiology, Male, Mice, Mice, Inbred BALB C, Peritoneal Cavity, Phagosomes, Recombinant Proteins, Salmonella typhimurium, Superoxide Dismutase

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ability of recombinant gamma interferon (rIFN-gamma) to activate macrophages for Salmonella-killing activity was kinetically examined in relation to phagosome-lysosome fusion and H2O2 generation. Resident peritoneal macrophages of BALB/c mice incubated with 10(2) to 10(3) U of rIFN-gamma per ml for 12 h exhibited enhanced bactericidal activity against Salmonella typhimurium, although H2O2 generation was unaltered. In contrast, macrophages incubated with equal doses of rIFN-gamma for 48 h showed both an enhanced Salmonella-killing activity and an increased generation of H2O2. To evaluate Salmonella-killing activities of macrophages, intracellular bacteria were assayed at 0, 2, and 8 h after infection. During the initial 2 h of infection, 12-h-activated macrophages, as well as the unstimulated control macrophages, showed a decline in bacterial population at the same rate. Over the next 6 h of infection, however, the number of viable bacteria in activated macrophages remained unchanged, whereas the number of bacteria in control macrophages significantly (P less than 0.05) increased. Similar results were obtained in 48-h-activated macrophages. On the other hand, macrophages incubated with 10 to 10(3) U of rIFN-gamma exhibited enhanced fusion of lysosomes to Salmonella-containing phagosomes in both the 12-h- and 48-h-stimulated stages. Moreover, when 48-h-activated macrophages were incubated concomitantly with superoxide dismutase and catalase, Salmonella-killing activity was not affected. These results indicate that rIFN-gamma per se is able to activate peritoneal macrophages to induce Salmonella-killing activity and suggest that increased phagosome-lysosome fusion followed by an oxygen-independent killing mechanism is primarily responsible for the enhanced Salmonella-killing activity in rIFN-gamma-activated macrophages.

          Related collections

          Author and article information

          Comments

          Comment on this article