6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Origin and role of path integration in the cognitive representations of the hippocampus: computational insights into open questions

      ,
      The Journal of Experimental Biology
      The Company of Biologists

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Path integration is a straightforward concept with varied connotations that are important to different disciplines concerned with navigation, such as ethology, cognitive science, robotics and neuroscience. In studying the hippocampal formation, it is fruitful to think of path integration as a computation that transforms a sense of motion into a sense of location, continuously integrated with landmark perception. Here, we review experimental evidence that path integration is intimately involved in fundamental properties of place cells and other spatial cells that are thought to support a cognitive abstraction of space in this brain system. We discuss hypotheses about the anatomical and computational origin of path integration in the well-characterized circuits of the rodent limbic system. We highlight how computational frameworks for map-building in robotics and cognitive science alike suggest an essential role for path integration in the creation of a new map in unfamiliar territory, and how this very role can help us make sense of differences in neurophysiological data from novel versus familiar and small versus large environments. Similar computational principles could be at work when the hippocampus builds certain non-spatial representations, such as time intervals or trajectories defined in a sensory stimulus space. Summary: Path integration is one of the fundamental computations giving rise to the cognitive map and possibly other non-spatial representations in the hippocampal formation and its subcortical afferents.

          Related collections

          Most cited references161

          • Record: found
          • Abstract: found
          • Article: not found

          Microstructure of a spatial map in the entorhinal cortex.

          The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Theta oscillations in the hippocampus.

            Theta oscillations represent the "on-line" state of the hippocampus. The extracellular currents underlying theta waves are generated mainly by the entorhinal input, CA3 (Schaffer) collaterals, and voltage-dependent Ca(2+) currents in pyramidal cell dendrites. The rhythm is believed to be critical for temporal coding/decoding of active neuronal ensembles and the modification of synaptic weights. Nevertheless, numerous critical issues regarding both the generation of theta oscillations and their functional significance remain challenges for future research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Memory, navigation and theta rhythm in the hippocampal-entorhinal system.

              Theories on the functions of the hippocampal system are based largely on two fundamental discoveries: the amnestic consequences of removing the hippocampus and associated structures in the famous patient H.M. and the observation that spiking activity of hippocampal neurons is associated with the spatial position of the rat. In the footsteps of these discoveries, many attempts were made to reconcile these seemingly disparate functions. Here we propose that mechanisms of memory and planning have evolved from mechanisms of navigation in the physical world and hypothesize that the neuronal algorithms underlying navigation in real and mental space are fundamentally the same. We review experimental data in support of this hypothesis and discuss how specific firing patterns and oscillatory dynamics in the entorhinal cortex and hippocampus can support both navigation and memory.
                Bookmark

                Author and article information

                Journal
                The Journal of Experimental Biology
                J Exp Biol
                The Company of Biologists
                0022-0949
                1477-9145
                February 06 2019
                February 06 2019
                February 06 2019
                February 06 2019
                : 222
                : Suppl 1
                : jeb188912
                Article
                10.1242/jeb.188912
                7375830
                30728236
                d2be890c-6481-4072-9d34-f35ddc0d8213
                © 2019

                http://www.biologists.com/user-licence-1-1

                History

                Comments

                Comment on this article