20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Glycoprotein folding and quality-control mechanisms in protein-folding diseases

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Biosynthesis of proteins – from translation to folding to export – encompasses a complex set of events that are exquisitely regulated and scrutinized to ensure the functional quality of the end products. Cells have evolved to capitalize on multiple post-translational modifications in addition to primary structure to indicate the folding status of nascent polypeptides to the chaperones and other proteins that assist in their folding and export. These modifications can also, in the case of irreversibly misfolded candidates, signal the need for dislocation and degradation. The current Review focuses on the glycoprotein quality-control (GQC) system that utilizes protein N-glycosylation and N-glycan trimming to direct nascent glycopolypeptides through the folding, export and dislocation pathways in the endoplasmic reticulum (ER). A diverse set of pathological conditions rooted in defective as well as over-vigilant ER quality-control systems have been identified, underlining its importance in human health and disease. We describe the GQC pathways and highlight disease and animal models that have been instrumental in clarifying our current understanding of these processes.

          Related collections

          Most cited references136

          • Record: found
          • Abstract: found
          • Article: not found

          Aggresomes: A Cellular Response to Misfolded Proteins

          Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            On the frequency of protein glycosylation, as deduced from analysis of the SWISS-PROT database.

            The SWISS-PROT protein sequence data bank contains at present nearly 75,000 entries, almost two thirds of which include the potential N-glycosylation consensus sequence, or sequon, NXS/T (where X can be any amino acid but proline) and thus may be glycoproteins. The number of proteins filed as glycoproteins is however considerably smaller, 7942, of which 749 have been characterized with respect to the total number of their carbohydrate units and sites of attachment of the latter to the protein, as well as the nature of the carbohydrate-peptide linking group. Of these well characterized glycoproteins, about 90% carry either N-linked carbohydrate units alone or both N- and O-linked ones, attached at 1297 N-glycosylation sites (1.9 per glycoprotein molecule) and the rest are O-glycosylated only. Since the total number of sequons in the well characterized glycoproteins is 1968, their rate of occupancy is 2/3. Assuming that the same number of N-linked units and rate of sequon occupancy occur in all sequon containing proteins and that the proportion of solely O-glycosylated proteins (ca. 10%) will also be the same as among the well characterized ones, we conclude that the majority of sequon containing proteins will be found to be glycosylated and that more than half of all proteins are glycoproteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mechanisms and principles of N-linked protein glycosylation.

              N-linked glycosylation, a protein modification system present in all domains of life, is characterized by a high structural diversity of N-linked glycans found among different species and by a large number of proteins that are glycosylated. Based on structural, functional, and phylogenetic approaches, this review discusses the highly conserved processes that are at the basis of this unique general protein modification system. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Dis Model Mech
                Dis Model Mech
                dmm
                DMM
                Disease Models & Mechanisms
                The Company of Biologists Limited
                1754-8403
                1754-8411
                March 2014
                : 7
                : 3
                : 331-341
                Affiliations
                [1 ]Department of Biological Chemistry and Medical Scientist Training Program, University of Michigan, Ann Arbor, MI 48109, USA
                [2 ]Center for Neuroscience, Aging and Stem Cell Research, Sanford-Burnham Medical Research Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
                Author notes
                [*]

                These authors contributed equally to this work

                []Author for correspondence ( rkaufman@ 123456sanfordburnham.org )
                Article
                0070331
                10.1242/dmm.014589
                3944493
                24609034
                d2c7eaf9-0397-4ea4-b6f4-81d38937d511
                © 2014. Published by The Company of Biologists Ltd

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/3.0), which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 23 October 2013
                : 14 January 2014
                Categories
                Review

                Molecular medicine
                n-glycosylation,glycoprotein folding,er quality control,er-associated degradation,er export

                Comments

                Comment on this article