2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A numerical model based on the nonlinear, one-dimensional (1-D) equations of pressure and flow wave propagation in conduit arteries is tested against a well-defined experimental 1:1 replica of the human arterial tree. The tree consists of 37 silicone branches representing the largest central systemic arteries in the human, including the aorta, carotid arteries and arteries that perfuse the upper and lower limbs and the main abdominal organs. The set-up is mounted horizontally and connected to a pulsatile pump delivering a periodic output similar to the aortic flow. Terminal branches end in simple resistance models, consisting of stiff capillary tubes leading to an overflow reservoir that reflects a constant venous pressure. The parameters required by the numerical algorithm are directly measured in the in vitro set-up and no data fitting is involved. Comparison of experimental and numerical pressure and flow waveforms shows the ability of the 1-D time-domain formulation to capture the main features of pulse wave propagation measured throughout the system test. As a consequence of the simple resistive boundary conditions used to reduce the uncertainty of the parameters involved in the simulation, the experimental set-up generates waveforms at terminal branches with additional non-physiological oscillations. The frequencies of these oscillations are well captured by the 1-D model, even though amplitudes are overestimated. Adding energy losses in bifurcations and including fluid inertia and compliance to the purely resistive terminal models does not reduce the underdamped effect, suggesting that wall visco-elasticity might play an important role in the experimental results. Nevertheless, average relative root-mean-square errors between simulations and experimental waveforms are smaller than 4% for pressure and 19% for the flow at all 70 locations studied.

          Related collections

          Author and article information

          Journal
          Journal of Biomechanics
          Journal of Biomechanics
          Elsevier BV
          00219290
          January 2007
          January 2007
          : 40
          : 15
          : 3476-3486
          Article
          10.1016/j.jbiomech.2007.05.027
          17640653
          d2c85965-7472-48e9-833f-963ffa7cc9b8
          © 2007

          https://www.elsevier.com/tdm/userlicense/1.0/

          History

          Comments

          Comment on this article