71
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Monitoring Training Load to Understand Fatigue in Athletes

      review-article
      Sports Medicine (Auckland, N.z.)
      Springer International Publishing

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Many athletes, coaches, and support staff are taking an increasingly scientific approach to both designing and monitoring training programs. Appropriate load monitoring can aid in determining whether an athlete is adapting to a training program and in minimizing the risk of developing non-functional overreaching, illness, and/or injury. In order to gain an understanding of the training load and its effect on the athlete, a number of potential markers are available for use. However, very few of these markers have strong scientific evidence supporting their use, and there is yet to be a single, definitive marker described in the literature. Research has investigated a number of external load quantifying and monitoring tools, such as power output measuring devices, time-motion analysis, as well as internal load unit measures, including perception of effort, heart rate, blood lactate, and training impulse. Dissociation between external and internal load units may reveal the state of fatigue of an athlete. Other monitoring tools used by high-performance programs include heart rate recovery, neuromuscular function, biochemical/hormonal/immunological assessments, questionnaires and diaries, psychomotor speed, and sleep quality and quantity. The monitoring approach taken with athletes may depend on whether the athlete is engaging in individual or team sport activity; however, the importance of individualization of load monitoring cannot be over emphasized. Detecting meaningful changes with scientific and statistical approaches can provide confidence and certainty when implementing change. Appropriate monitoring of training load can provide important information to athletes and coaches; however, monitoring systems should be intuitive, provide efficient data analysis and interpretation, and enable efficient reporting of simple, yet scientifically valid, feedback.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the European College of Sport Science and the American College of Sports Medicine.

          Successful training not only must involve overload but also must avoid the combination of excessive overload plus inadequate recovery. Athletes can experience short-term performance decrement without severe psychological or lasting other negative symptoms. This functional overreaching will eventually lead to an improvement in performance after recovery. When athletes do not sufficiently respect the balance between training and recovery, nonfunctional overreaching (NFOR) can occur. The distinction between NFOR and overtraining syndrome (OTS) is very difficult and will depend on the clinical outcome and exclusion diagnosis. The athlete will often show the same clinical, hormonal, and other signs and symptoms. A keyword in the recognition of OTS might be "prolonged maladaptation" not only of the athlete but also of several biological, neurochemical, and hormonal regulation mechanisms. It is generally thought that symptoms of OTS, such as fatigue, performance decline, and mood disturbances, are more severe than those of NFOR. However, there is no scientific evidence to either confirm or refute this suggestion. One approach to understanding the etiology of OTS involves the exclusion of organic diseases or infections and factors such as dietary caloric restriction (negative energy balance) and insufficient carbohydrate and/or protein intake, iron deficiency, magnesium deficiency, allergies, and others together with identification of initiating events or triggers. In this article, we provide the recent status of possible markers for the detection of OTS. Currently, several markers (hormones, performance tests, psychological tests, and biochemical and immune markers) are used, but none of them meet all the criteria to make their use generally accepted.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Training adaptation and heart rate variability in elite endurance athletes: opening the door to effective monitoring.

            The measurement of heart rate variability (HRV) is often considered a convenient non-invasive assessment tool for monitoring individual adaptation to training. Decreases and increases in vagal-derived indices of HRV have been suggested to indicate negative and positive adaptations, respectively, to endurance training regimens. However, much of the research in this area has involved recreational and well-trained athletes, with the small number of studies conducted in elite athletes revealing equivocal outcomes. For example, in elite athletes, studies have revealed both increases and decreases in HRV to be associated with negative adaptation. Additionally, signs of positive adaptation, such as increases in cardiorespiratory fitness, have been observed with atypical concomitant decreases in HRV. As such, practical ways by which HRV can be used to monitor training status in elites are yet to be established. This article addresses the current literature that has assessed changes in HRV in response to training loads and the likely positive and negative adaptations shown. We reveal limitations with respect to how the measurement of HRV has been interpreted to assess positive and negative adaptation to endurance training regimens and subsequent physical performance. We offer solutions to some of the methodological issues associated with using HRV as a day-to-day monitoring tool. These include the use of appropriate averaging techniques, and the use of specific HRV indices to overcome the issue of HRV saturation in elite athletes (i.e., reductions in HRV despite decreases in resting heart rate). Finally, we provide examples in Olympic and World Champion athletes showing how these indices can be practically applied to assess training status and readiness to perform in the period leading up to a pinnacle event. The paper reveals how longitudinal HRV monitoring in elites is required to understand their unique individual HRV fingerprint. For the first time, we demonstrate how increases and decreases in HRV relate to changes in fitness and freshness, respectively, in elite athletes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Applications of GPS technologies to field sports.

              Global positioning system (GPS) technology was made possible after the invention of the atomic clock. The first suggestion that GPS could be used to assess the physical activity of humans followed some 40 y later. There was a rapid uptake of GPS technology, with the literature concentrating on validation studies and the measurement of steady-state movement. The first attempts were made to validate GPS for field sport applications in 2006. While GPS has been validated for applications for team sports, some doubts continue to exist on the appropriateness of GPS for measuring short high-velocity movements. Thus, GPS has been applied extensively in Australian football, cricket, hockey, rugby union and league, and soccer. There is extensive information on the activity profile of athletes from field sports in the literature stemming from GPS, and this includes total distance covered by players and distance in velocity bands. Global positioning systems have also been applied to detect fatigue in matches, identify periods of most intense play, different activity profiles by position, competition level, and sport. More recent research has integrated GPS data with the physical capacity or fitness test score of athletes, game-specific tasks, or tactical or strategic information. The future of GPS analysis will involve further miniaturization of devices, longer battery life, and integration of other inertial sensor data to more effectively quantify the effort of athletes.
                Bookmark

                Author and article information

                Contributors
                +61 2 6214 1589 , Shona.halson@ausport.gov.au
                Journal
                Sports Med
                Sports Med
                Sports Medicine (Auckland, N.z.)
                Springer International Publishing (Cham )
                0112-1642
                1179-2035
                9 September 2014
                9 September 2014
                2014
                : 44
                : Suppl 2
                : 139-147
                Affiliations
                AIS Physiology, Australian Institute of Sport, PO Box 176, Belconnen, ACT 2616 Australia
                Article
                253
                10.1007/s40279-014-0253-z
                4213373
                25200666
                d2dc40ab-a18e-48d6-98c8-e19d4c7ed56e
                © The Author(s) 2014

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

                Categories
                Review Article
                Custom metadata
                © Springer International Publishing Switzerland 2014

                Comments

                Comment on this article