48
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A Novel Protein, CHRONO, Functions as a Core Component of the Mammalian Circadian Clock

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Two independent studies, one of them using a computational approach, identified CHRONO, a gene shown to modulate the activity of circadian transcription factors and alter circadian behavior in mice.

          Abstract

          Circadian rhythms are controlled by a system of negative and positive genetic feedback loops composed of clock genes. Although many genes have been implicated in these feedback loops, it is unclear whether our current list of clock genes is exhaustive. We have recently identified Chrono as a robustly cycling transcript through genome-wide profiling of BMAL1 binding on the E-box. Here, we explore the role of Chrono in cellular timekeeping. Remarkably, endogenous CHRONO occupancy around E-boxes shows a circadian oscillation antiphasic to BMAL1. Overexpression of Chrono leads to suppression of BMAL1–CLOCK activity in a histone deacetylase (HDAC) –dependent manner. In vivo loss-of-function studies of Chrono including Avp neuron-specific knockout (KO) mice display a longer circadian period of locomotor activity. Chrono KO also alters the expression of core clock genes and impairs the response of the circadian clock to stress. CHRONO forms a complex with the glucocorticoid receptor and mediates glucocorticoid response. Our comprehensive study spotlights a previously unrecognized clock component of an unsuspected negative circadian feedback loop that is independent of another negative regulator, Cry2, and that integrates behavioral stress and epigenetic control for efficient metabolic integration of the clock.

          Author Summary

          The circadian clock has a fundamental role in regulating biological temporal rhythms in organisms, and it is tightly controlled by a molecular circuit consisting of positive and negative regulatory feedback loops. Although many of the clock genes comprising this circuit have been identified, there are still some critical components missing. Here, we characterize a circadian gene renamed Chrono (Gm129) and show that it functions as a transcriptional repressor of the negative feedback loop in the mammalian clock. Chrono binds to the regulatory region of clock genes and its occupancy oscillates in a circadian manner. Chrono knockout and Avp-neuron-specific knockout mice display longer circadian periods and altered expression of core clock genes. We show that Chrono-mediated repression involves the suppression of BMAL1–CLOCK activity via an epigenetic mechanism and that it regulates metabolic pathways triggered by behavioral stress. Our study suggests that Chrono functions as a clock repressor and reveals the molecular mechanisms underlying its function.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          A gene expression atlas of the central nervous system based on bacterial artificial chromosomes.

          The mammalian central nervous system (CNS) contains a remarkable array of neural cells, each with a complex pattern of connections that together generate perceptions and higher brain functions. Here we describe a large-scale screen to create an atlas of CNS gene expression at the cellular level, and to provide a library of verified bacterial artificial chromosome (BAC) vectors and transgenic mouse lines that offer experimental access to CNS regions, cell classes and pathways. We illustrate the use of this atlas to derive novel insights into gene function in neural cells, and into principal steps of CNS development. The atlas, library of BAC vectors and BAC transgenic mice generated in this screen provide a rich resource that allows a broad array of investigations not previously available to the neuroscience community.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Transcriptional architecture and chromatin landscape of the core circadian clock in mammals.

            The mammalian circadian clock involves a transcriptional feed back loop in which CLOCK and BMAL1 activate the Period and Cryptochrome genes, which then feedback and repress their own transcription. We have interrogated the transcriptional architecture of the circadian transcriptional regulatory loop on a genome scale in mouse liver and find a stereotyped, time-dependent pattern of transcription factor binding, RNA polymerase II (RNAPII) recruitment, RNA expression, and chromatin states. We find that the circadian transcriptional cycle of the clock consists of three distinct phases: a poised state, a coordinated de novo transcriptional activation state, and a repressed state. Only 22% of messenger RNA (mRNA) cycling genes are driven by de novo transcription, suggesting that both transcriptional and posttranscriptional mechanisms underlie the mammalian circadian clock. We also find that circadian modulation of RNAPII recruitment and chromatin remodeling occurs on a genome-wide scale far greater than that seen previously by gene expression profiling.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              System-level identification of transcriptional circuits underlying mammalian circadian clocks.

              Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E' boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E' boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                PLoS Biol
                plos
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                April 2014
                15 April 2014
                : 12
                : 4
                : e1001839
                Affiliations
                [1 ]RIKEN Brain Science Institute, Wako, Saitama, Japan
                [2 ]Graduate School of Biomedical Sciences, Hiroshima University, Minami, Hiroshima, Japan
                [3 ]Department of Mathematics, University of Michigan, Ann Arbor, Michigan, United States of America
                [4 ]Laboratory for Animal Resources and Genetic Engineering, RIKEN Center for Developmental Biology, Chuo, Kobe, Japan
                [5 ]Department of Radiation Biology and Medical Genetics, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
                [6 ]Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Chiyoda, Tokyo, Japan
                University of Geneva, Switzerland
                Author notes

                The authors have declared that no competing interests exist.

                The author(s) have made the following declarations about their contributions: Conceived and designed the experiments: AG FH TTakumi. Performed the experiments: AG FH TY ST TA HK KF. Analyzed the data: JM JKK YK AM TTakumi. Contributed reagents/materials/analysis tools: TTodo. Wrote the paper: AG FH DF TTakumi.

                [¤]

                Current address: Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America.

                Article
                PBIOLOGY-D-13-03433
                10.1371/journal.pbio.1001839
                3988004
                24736997
                d2f14838-18e3-4bcb-b60d-47005974f80a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 29 August 2013
                : 7 March 2014
                Page count
                Pages: 15
                Funding
                Japan Society of Promotion of Science and Ministry of Education, Culture, Sports, Science, and Technology KAKENHI, Strategic International Coorperative Program and CREST, Japan Science and Technology Agency, Human Frontier Science Program (HFSP) grant RPG 24/2012, the Takeda Science Foundation, Mitsui Life Social Welfare Foundation, Sony Corporation, and Nippon Boehringer Ingelheim Co. NSF grant DMS-0931642 to the Mathematical Biosciences Institute (JKK). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Biochemistry
                Metabolism
                Chronobiology
                Physiology
                Physiological Processes
                Medicine and Health Sciences

                Life sciences
                Life sciences

                Comments

                Comment on this article