13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Metal carbonyl clusters of groups 8–10: synthesis and catalysis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In this review article, we discuss advances in the chemistry of metal carbonyl clusters (MCCs) spanning the last three decades, with an emphasis on the more recent reports and those involving groups 8–10 elements.

          Abstract

          In this review article, we discuss advances in the chemistry of metal carbonyl clusters (MCCs) spanning the last three decades, with an emphasis on the more recent reports and those involving groups 8–10 elements. Synthetic methods have advanced and been refined, leading to higher-nuclearity clusters and a wider array of structures and nuclearities. Our understanding of the electronic structure in MCCs has advanced to a point where molecular chemistry tools and other advanced tools can probe their properties at a level of detail that surpasses that possible with other nanomaterials and solid-state materials. MCCs therefore advance our understanding of structure–property–reactivity correlations in other higher-nuclearity materials. With respect to catalysis, this article focuses only on homogeneous applications, but it includes both thermally and electrochemically driven catalysis. Applications in thermally driven catalysis have found success where the reaction conditions stabilise the compounds toward loss of CO. In more recent years, MCCs, which exhibit delocalised bonding and possess many electron-withdrawing CO ligands, have emerged as very stable and effective for reductive electrocatalysis reactions since reduction often strengthens M–C(O) bonds and since room-temperature reaction conditions are sufficient for driving the electrocatalysis.

          Related collections

          Most cited references337

          • Record: found
          • Abstract: found
          • Article: not found

          Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities.

          Colloidal nanoparticles are being intensely pursued in current nanoscience research. Nanochemists are often frustrated by the well-known fact that no two nanoparticles are the same, which precludes the deep understanding of many fundamental properties of colloidal nanoparticles in which the total structures (core plus surface) must be known. Therefore, controlling nanoparticles with atomic precision and solving their total structures have long been major dreams for nanochemists. Recently, these goals are partially fulfilled in the case of gold nanoparticles, at least in the ultrasmall size regime (1-3 nm in diameter, often called nanoclusters). This review summarizes the major progress in the field, including the principles that permit atomically precise synthesis, new types of atomic structures, and unique physical and chemical properties of atomically precise nanoparticles, as well as exciting opportunities for nanochemists to understand very fundamental science of colloidal nanoparticles (such as the stability, metal-ligand interfacial bonding, ligand assembly on particle surfaces, aesthetic structural patterns, periodicities, and emergence of the metallic state) and to develop a range of potential applications such as in catalysis, biomedicine, sensing, imaging, optics, and energy conversion. Although most of the research activity currently focuses on thiolate-protected gold nanoclusters, important progress has also been achieved in other ligand-protected gold, silver, and bimetal (or alloy) nanoclusters. All of these types of unique nanoparticles will bring unprecedented opportunities, not only in understanding the fundamental questions of nanoparticles but also in opening up new horizons for scientific studies of nanoparticles.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles.

            Atomically precise pieces of matter of nanometer dimensions composed of noble metals are new categories of materials with many unusual properties. Over 100 molecules of this kind with formulas such as Au25(SR)18, Au38(SR)24, and Au102(SR)44 as well as Ag25(SR)18, Ag29(S2R)12, and Ag44(SR)30 (often with a few counterions to compensate charges) are known now. They can be made reproducibly with robust synthetic protocols, resulting in colored solutions, yielding powders or diffractable crystals. They are distinctly different from nanoparticles in their spectroscopic properties such as optical absorption and emission, showing well-defined features, just like molecules. They show isotopically resolved molecular ion peaks in mass spectra and provide diverse information when examined through multiple instrumental methods. Most important of these properties is luminescence, often in the visible-near-infrared window, useful in biological applications. Luminescence in the visible region, especially by clusters protected with proteins, with a large Stokes shift, has been used for various sensing applications, down to a few tens of molecules/ions, in air and water. Catalytic properties of clusters, especially oxidation of organic substrates, have been examined. Materials science of these systems presents numerous possibilities and is fast evolving. Computational insights have given reasons for their stability and unusual properties. The molecular nature of these materials is unequivocally manifested in a few recent studies such as intercluster reactions forming precise clusters. These systems manifest properties of the core, of the ligand shell, as well as that of the integrated system. They are better described as protected molecules or aspicules, where aspis means shield and cules refers to molecules, implying that they are "shielded molecules". In order to understand their diverse properties, a nomenclature has been introduced with which it is possible to draw their structures with positional labels on paper, with some training. Research in this area is captured here, based on the publications available up to December 2016.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s⁻¹ for H₂ production.

              Reduction of acids to molecular hydrogen as a means of storing energy is catalyzed by platinum, but its low abundance and high cost are problematic. Precisely controlled delivery of protons is critical in hydrogenase enzymes in nature that catalyze hydrogen (H(2)) production using earth-abundant metals (iron and nickel). Here, we report that a synthetic nickel complex, [Ni(P(Ph)(2)N(Ph))(2)](BF(4))(2), (P(Ph)(2)N(Ph) = 1,3,6-triphenyl-1-aza-3,6-diphosphacycloheptane), catalyzes the production of H(2) using protonated dimethylformamide as the proton source, with turnover frequencies of 33,000 per second (s(-1)) in dry acetonitrile and 106,000 s(-1) in the presence of 1.2 M of water, at a potential of -1.13 volt (versus the ferrocenium/ferrocene couple). The mechanistic implications of these remarkably fast catalysts point to a key role of pendant amines that function as proton relays.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                CSRVBR
                Chemical Society Reviews
                Chem. Soc. Rev.
                Royal Society of Chemistry (RSC)
                0306-0012
                1460-4744
                August 31 2021
                2021
                : 50
                : 17
                : 9503-9539
                Affiliations
                [1 ]Dipartimento di Chimica Industriale “Toso Montanari”, Università di Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
                [2 ]Department of Chemistry, The University of California, Davis, CA, 95616, USA
                Article
                10.1039/D1CS00161B
                34259674
                d31b2984-7f2e-4c8f-a085-436e36721115
                © 2021

                http://rsc.li/journals-terms-of-use#chorus

                History

                Comments

                Comment on this article