+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      EasyFRAP-web: a web-based tool for the analysis of fluorescence recovery after photobleaching data

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Understanding protein dynamics is crucial in order to elucidate protein function and interactions. Advances in modern microscopy facilitate the exploration of the mobility of fluorescently tagged proteins within living cells. Fluorescence recovery after photobleaching (FRAP) is an increasingly popular functional live-cell imaging technique which enables the study of the dynamic properties of proteins at a single-cell level. As an increasing number of labs generate FRAP datasets, there is a need for fast, interactive and user-friendly applications that analyze the resulting data. Here we present easyFRAP-web, a web application that simplifies the qualitative and quantitative analysis of FRAP datasets. EasyFRAP-web permits quick analysis of FRAP datasets through an intuitive web interface with interconnected analysis steps (experimental data assessment, different types of normalization and estimation of curve-derived quantitative parameters). In addition, easyFRAP-web provides dynamic and interactive data visualization and data and figure export for further analysis after every step. We test easyFRAP-web by analyzing FRAP datasets capturing the mobility of the cell cycle regulator Cdt2 in the presence and absence of DNA damage in cultured cells. We show that easyFRAP-web yields results consistent with previous studies and highlights cell-to-cell heterogeneity in the estimated kinetic parameters. EasyFRAP-web is platform-independent and is freely accessible at: https://easyfrap.vmnet.upatras.gr/.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: not found

          NIH Image to ImageJ: 25 years of image analysis.

          For the past 25 years NIH Image and ImageJ software have been pioneers as open tools for the analysis of scientific images. We discuss the origins, challenges and solutions of these two programs, and how their history can serve to advise and inform other software projects.
            • Record: found
            • Abstract: found
            • Article: not found

            Nuclear Membrane Dynamics and Reassembly in Living Cells: Targeting of an Inner Nuclear Membrane Protein in Interphase and Mitosis

            The mechanisms of localization and retention of membrane proteins in the inner nuclear membrane and the fate of this membrane system during mitosis were studied in living cells using the inner nuclear membrane protein, lamin B receptor, fused to green fluorescent protein (LBR–GFP). Photobleaching techniques revealed the majority of LBR–GFP to be completely immobilized in the nuclear envelope (NE) of interphase cells, suggesting a tight binding to heterochromatin and/or lamins. A subpopulation of LBR–GFP within ER membranes, by contrast, was entirely mobile and diffused rapidly and freely (D = 0.41 ± 0.1 μm2/s). High resolution confocal time-lapse imaging in mitotic cells revealed LBR–GFP redistributing into the interconnected ER membrane system in prometaphase, exhibiting the same high mobility and diffusion constant as observed in interphase ER membranes. LBR–GFP rapidly diffused across the cell within the membrane network defined by the ER, suggesting the integrity of the ER was maintained in mitosis, with little or no fragmentation and vesiculation. At the end of mitosis, nuclear membrane reformation coincided with immobilization of LBR–GFP in ER elements at contact sites with chromatin. LBR–GFP–containing ER membranes then wrapped around chromatin over the course of 2–3 min, quickly and efficiently compartmentalizing nuclear material. Expansion of the NE followed over the course of 30–80 min. Thus, selective changes in lateral mobility of LBR–GFP within the ER/NE membrane system form the basis for its localization to the inner nuclear membrane during interphase. Such changes, rather than vesiculation mechanisms, also underlie the redistribution of this molecule during NE disassembly and reformation in mitosis.
              • Record: found
              • Abstract: found
              • Article: not found

              Analysis of binding reactions by fluorescence recovery after photobleaching.

              Fluorescence recovery after photobleaching (FRAP) is now widely used to investigate binding interactions in live cells. Although various idealized solutions have been identified for the reaction-diffusion equations that govern FRAP, there has been no comprehensive analysis or systematic approach to serve as a guide for extracting binding information from an arbitrary FRAP curve. Here we present a complete solution to the FRAP reaction-diffusion equations for either single or multiple independent binding interactions, and then relate our solution to the various idealized cases. This yields a coherent approach to extract binding information from FRAP data which we have applied to the question of transcription factor mobility in the nucleus. We show that within the nucleus, the glucocorticoid receptor is transiently bound to a single state, with each molecule binding on average 65 sites per second. This rapid sampling is likely to be important in finding a specific promoter target sequence. Further we show that this predominant binding state is not the nuclear matrix, as some studies have suggested. We illustrate how our analysis provides several self-consistency checks on a FRAP fit. We also define constraints on what can be estimated from FRAP data, show that diffusion should play a key role in many FRAP recoveries, and provide tools to test its contribution. Overall our approach establishes a more general framework to assess the role of diffusion, the number of binding states, and the binding constants underlying a FRAP recovery.

                Author and article information

                Nucleic Acids Res
                Nucleic Acids Res
                Nucleic Acids Research
                Oxford University Press
                02 July 2018
                13 June 2018
                13 June 2018
                : 46
                : Web Server issue
                : W467-W472
                [1 ]Department of Biology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
                [2 ]Department of Physiology, School of Medicine, University of Patras, Rio, Patras 26505, Greece
                Author notes
                To whom correspondence should be addressed. Tel: +30 2610 997610; Fax: +30 2610 997422; Email: lygerou@ 123456med.upatras.gr

                The authors wish it to be known that, in their opinion, the second and third authors should be regarded as Joint Second Authors.

                Present address: Maria Anna Rapsomaniki, IBM, Zürich Research Lab, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.

                © The Author(s) 2018. Published by Oxford University Press on behalf of Nucleic Acids Research.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@ 123456oup.com

                Page count
                Pages: 6
                Funded by: European Research Council 10.13039/501100000781
                Award ID: ERC-StG 281851
                Award ID: ERC-PoC 755284
                Web Server Issue



                Comment on this article