1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pressure-induced actin polymerization in vascular smooth muscle as a mechanism underlying myogenic behavior.

      The FASEB Journal
      Actins, metabolism, physiology, Animals, Biopolymers, Cerebral Arteries, drug effects, Culture Techniques, Cytochalasin B, pharmacology, Cytoskeleton, Models, Biological, Muscle Contraction, Muscle, Smooth, Vascular, Pressure, Signal Transduction, Stress, Mechanical, Vascular Resistance

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We hypothesize that actin polymerization within vascular smooth muscle (VSM) in response to increased intravascular pressure is a novel and previously unrecognized mechanism underlying arterial myogenic behavior. This hypothesis is based on the following observations. 1) Unlike skeletal or cardiac muscle, VSM contains a substantial pool of unpolymerized globular (G) actin whose function is not known. 2) The cytosolic concentration of G-actin is significantly reduced by an elevation in intravascular pressure, demonstrating the dynamic nature of actin within VSM and implying a shift in the F:G equilibrium in favor of F-actin. 3) Agents that inhibit actin polymerization and stabilize the cytoskeleton (cytochalasins and latrunculin) inhibit the development of myogenic tone and decrease the effectiveness of myogenic reactivity. 4) Depolymerization of F-actin with cytochalasin D causes VSM relaxation and increased G-actin content, whereas polymerization of F-actin with jasplakinolide causes VSM contraction and decreased G-actin content. These results are consistent with observations in other cell types in which actin dynamics have been implicated in contractility and/or motility. Actin filament formation in VSM may therefore underlie mechanotransduction and, by providing additional sites for interaction with myosin, enhance force production in response to pressure. Although the mechanism by which actin polymerization is stimulated by pressure is not known, it likely occurs via integrin-mediated activation of signal transduction pathways previously associated with VSM contraction (e.g., PKC activation, Rho A, and tyrosine phosphorylation).

          Related collections

          Author and article information

          Comments

          Comment on this article