53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100°C

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Synthesis of nanosized particle of Ag-doped hydroxyapatite with antibacterial properties is in the great interest in the development of new biomedical applications. In this article, we propose a method for synthesized the Ag-doped nanocrystalline hydroxyapatite. A silver-doped nanocrystalline hydroxyapatite was synthesized at 100°C in deionized water. Other phase or impurities were not observed. Silver-doped hydroxyapatite nanoparticles (Ag:HAp) were performed by setting the atomic ratio of Ag/[Ag + Ca] at 20% and [Ca + Ag]/P as 1.67. The X-ray diffraction studies demonstrate that powders made by co-precipitation at 100°C exhibit the apatite characteristics with good crystal structure and no new phase or impurity is found. The scanning electron microscopy (SEM) observations suggest that these materials present a little different morphology, which reveals a homogeneous aspect of the synthesized particles for all samples. The presence of calcium (Ca), phosphor (P), oxygen (O), and silver (Ag) in the Ag:HAp is confirmed by energy dispersive X-ray (EDAX) analysis. FT-IR and FT-Raman spectroscopies revealed that the presence of the various vibrational modes corresponds to phosphates and hydroxyl groups. The strain of Staphylococcus aureus was used to evaluate the antibacterial activity of the Ca 10- x Ag x (PO4)6(OH)2 ( x = 0 and 0.2). In vitro bacterial adhesion study indicated a significant difference between HAp ( x = 0) and Ag:HAp ( x = 0.2). The Ag:Hap nanopowder showed higher inhibition.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: not found

          Antibacterial coatings on titanium implants.

          Titanium and titanium alloys are key biomedical materials because of their good biocompatibility and mechanical properties. Nevertheless, infection on and around titanium implants still remains a problem which is usually difficult to treat and may lead to eventual implant removal. As a result, preventive measures are necessary to mitigate implant-frelated infection. One important strategy is to render the implant surface antibacterial by impeding the formation of a biofilm. A number of approaches have been proposed for this purpose and they are reviewed in this article. (c) 2009 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Calcium Orthophosphates in Nature, Biology and Medicine

            The present overview is intended to point the readers’ attention to the important subject of calcium orthophosphates. These materials are of the special significance because they represent the inorganic part of major normal (bones, teeth and dear antlers) and pathological (i.e. those appearing due to various diseases) calcified tissues of mammals. Due to a great chemical similarity with the biological calcified tissues, many calcium orthophosphates possess remarkable biocompatibility and bioactivity. Materials scientists use this property extensively to construct artificial bone grafts that are either entirely made of or only surface-coated with the biologically relevant calcium ortho-phosphates. For example, self-setting hydraulic cements made of calcium orthophosphates are helpful in bone repair, while titanium substitutes covered by a surface layer of calcium orthophosphates are used for hip joint endoprostheses and as tooth substitutes. Porous scaffolds made of calcium orthophosphates are very promising tools for tissue engineering applications. In addition, technical grade calcium orthophosphates are very popular mineral fertilizers. Thus ere calcium orthophosphates are of great significance for humankind and, in this paper, an overview on the current knowledge on this subject is provided.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Calcium phosphates as substitution of bone tissues

                Bookmark

                Author and article information

                Journal
                Nanoscale Res Lett
                Nanoscale Research Letters
                Springer
                1931-7573
                1556-276X
                2011
                3 December 2011
                : 6
                : 1
                : 613
                Affiliations
                [1 ]National Institute of Materials Physics, 105 bis Atomistilor, P.O. Box MG 07, 077125, Bucuresti-Magurele, Romania
                [2 ]Institut des Matériaux-Jean Rouxel, 02 rue de la Houssinière BP 32 229, 44 322 Nantes, France
                [3 ]Faculty of Physics, University of Bucharest, 405 Atomistilor, CP MG - 1, 077125, Bucuresti-Magurele, Romania
                Article
                1556-276X-6-613
                10.1186/1556-276X-6-613
                3240665
                22136671
                d327eac9-c2c9-4db3-a78b-098462ebf8fd
                Copyright ©2011 Ciobanu et al; licensee Springer.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 June 2011
                : 3 December 2011
                Categories
                Nano Express

                Nanomaterials
                Nanomaterials

                Comments

                Comment on this article