4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Members of Marinobacter and Arcobacter Influence System Biogeochemistry During Early Production of Hydraulically Fractured Natural Gas Wells in the Appalachian Basin

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hydraulic fracturing is the prevailing method for enhancing recovery of hydrocarbon resources from unconventional shale formations, yet little is understood regarding the microbial impact on biogeochemical cycling in natural-gas wells. Although the metabolisms of certain fermentative bacteria and methanogenic archaea that dominate in later produced fluids have been well studied, few details have been reported on microorganisms prevelant during the early flowback period, when oxygen and other surface-derived oxyanions and nutrients become depleted. Here, we report the isolation, genomic and phenotypic characterization of Marinobacter and Arcobacter bacterial species from natural-gas wells in the Utica-Point Pleasant and Marcellus Formations coupled to supporting geochemical and metagenomic analyses of produced fluid samples. These unconventional hydrocarbon system-derived Marinobacter sp. are capable of utilizing a diversity of organic carbon sources including aliphatic and aromatic hydrocarbons, amino acids, and carboxylic acids. Marinobacter and Arcobacter can metabolize organic nitrogen sources and have the capacity for denitrification and dissimilatory nitrate reduction to ammonia (DNRA) respectively; with DNRA and ammonification processes partially explaining high concentrations of ammonia measured in produced fluids. Arcobacter is capable of chemosynthetic sulfur oxidation, which could fuel metabolic processes for other heterotrophic, fermentative, or sulfate-reducing community members. Our analysis revealed mechanisms for growth of these taxa across a broad range of salinities (up to 15% salt), which explains their enrichment during early natural-gas production. These results demonstrate the prevalence of Marinobacter and Arcobacter during a key maturation phase of hydraulically fractured natural-gas wells, and highlight the significant role these genera play in biogeochemical cycling for this economically important energy system.

          Related collections

          Most cited references67

          • Record: found
          • Abstract: found
          • Article: not found

          Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla.

          BD1-5, OP11, and OD1 bacteria have been widely detected in anaerobic environments, but their metabolisms remain unclear owing to lack of cultivated representatives and minimal genomic sampling. We uncovered metabolic characteristics for members of these phyla, and a new lineage, PER, via cultivation-independent recovery of 49 partial to near-complete genomes from an acetate-amended aquifer. All organisms were nonrespiring anaerobes predicted to ferment. Three augment fermentation with archaeal-like hybrid type II/III ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) that couples adenosine monophosphate salvage with CO(2) fixation, a pathway not previously described in Bacteria. Members of OD1 reduce sulfur and may pump protons using archaeal-type hydrogenases. For six organisms, the UGA stop codon is translated as tryptophan. All bacteria studied here may play previously unrecognized roles in hydrogen production, sulfur cycling, and fermentation of refractory sedimentary carbon.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Microbial life at high salt concentrations: phylogenetic and metabolic diversity

            Halophiles are found in all three domains of life. Within the Bacteria we know halophiles within the phyla Cyanobacteria, Proteobacteria, Firmicutes, Actinobacteria, Spirochaetes, and Bacteroidetes. Within the Archaea the most salt-requiring microorganisms are found in the class Halobacteria. Halobacterium and most of its relatives require over 100–150 g/l salt for growth and structural stability. Also within the order Methanococci we encounter halophilic species. Halophiles and non-halophilic relatives are often found together in the phylogenetic tree, and many genera, families and orders have representatives with greatly different salt requirement and tolerance. A few phylogenetically coherent groups consist of halophiles only: the order Halobacteriales, family Halobacteriaceae (Euryarchaeota) and the anaerobic fermentative bacteria of the order Halanaerobiales (Firmicutes). The family Halomonadaceae (Gammaproteobacteria) almost exclusively contains halophiles. Halophilic microorganisms use two strategies to balance their cytoplasm osmotically with their medium. The first involves accumulation of molar concentrations of KCl. This strategy requires adaptation of the intracellular enzymatic machinery, as proteins should maintain their proper conformation and activity at near-saturating salt concentrations. The proteome of such organisms is highly acidic, and most proteins denature when suspended in low salt. Such microorganisms generally cannot survive in low salt media. The second strategy is to exclude salt from the cytoplasm and to synthesize and/or accumulate organic 'compatible' solutes that do not interfere with enzymatic activity. Few adaptations of the cells' proteome are needed, and organisms using the 'organic-solutes-in strategy' often adapt to a surprisingly broad salt concentration range. Most halophilic Bacteria, but also the halophilic methanogenic Archaea use such organic solutes. A variety of such solutes are known, including glycine betaine, ectoine and other amino acid derivatives, sugars and sugar alcohols. The 'high-salt-in strategy' is not limited to the Halobacteriaceae. The Halanaerobiales (Firmicutes) also accumulate salt rather than organic solutes. A third, phylogenetically unrelated organism accumulates KCl: the red extremely halophilic Salinibacter (Bacteroidetes), recently isolated from saltern crystallizer brines. Analysis of its genome showed many points of resemblance with the Halobacteriaceae, probably resulting from extensive horizontal gene transfer. The case of Salinibacter shows that more unusual types of halophiles may be waiting to be discovered.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A unifying framework for dinitrogen fixation in the terrestrial biosphere.

              Dinitrogen (N(2)) fixation is widely recognized as an important process in controlling ecosystem responses to global environmental change, both today and in the past; however, significant discrepancies exist between theory and observations of patterns of N(2) fixation across major sectors of the land biosphere. A question remains as to why symbiotic N(2)-fixing plants are more abundant in vast areas of the tropics than in many of the mature forests that seem to be nitrogen-limited in the temperate and boreal zones. Here we present a unifying framework for terrestrial N(2) fixation that can explain the geographic occurrence of N(2) fixers across diverse biomes and at the global scale. By examining trade-offs inherent in plant carbon, nitrogen and phosphorus capture, we find a clear advantage to symbiotic N(2) fixers in phosphorus-limited tropical savannas and lowland tropical forests. The ability of N(2) fixers to invest nitrogen into phosphorus acquisition seems vital to sustained N(2) fixation in phosphorus-limited tropical ecosystems. In contrast, modern-day temperatures seem to constrain N(2) fixation rates and N(2)-fixing species from mature forests in the high latitudes. We propose that an analysis that couples biogeochemical cycling and biophysical mechanisms is sufficient to explain the principal geographical patterns of symbiotic N(2) fixation on land, thus providing a basis for predicting the response of nutrient-limited ecosystems to climate change and increasing atmospheric CO(2).
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Microbiol
                Front Microbiol
                Front. Microbiol.
                Frontiers in Microbiology
                Frontiers Media S.A.
                1664-302X
                15 November 2018
                2018
                : 9
                : 2646
                Affiliations
                [1] 1Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University , Columbus, OH, United States
                [2] 2Department of Civil and Environmental Engineering, Colorado State University , Fort Collins, CO, United States
                [3] 3School of Earth Sciences, The Ohio State University , Columbus, OH, United States
                [4] 4Department of Microbiology, The Ohio State University , Columbus, OH, United States
                [5] 5Department of Civil and Environmental Engineering, University of New Hampshire , Durham, NH, United States
                Author notes

                Edited by: D’Arcy Renee Meyer-Dombard, University of Illinois at Chicago, United States

                Reviewed by: Trinity L. Hamilton, University of Minnesota Twin Cities, United States; Kim Marie Handley, The University of Auckland, New Zealand; Melanie R. Mormile, Missouri University of Science and Technology, United States

                *Correspondence: Paula J. Mouser, Paula.Mouser@ 123456unh.edu

                This article was submitted to Extreme Microbiology, a section of the journal Frontiers in Microbiology

                Article
                10.3389/fmicb.2018.02646
                6249378
                30498478
                d32a1bb8-940f-4bc6-a731-a923e4d4e0eb
                Copyright © 2018 Evans, Panescu, Hanson, Welch, Sheets, Nastasi, Daly, Cole, Darrah, Wilkins, Wrighton and Mouser.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 18 July 2018
                : 17 October 2018
                Page count
                Figures: 5, Tables: 1, Equations: 0, References: 87, Pages: 17, Words: 0
                Categories
                Microbiology
                Original Research

                Microbiology & Virology
                natural gas,hydraulic fracturing,dark biosphere,deep subsurface,cultivation,characterization,genome,shale

                Comments

                Comment on this article