105
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      How many human proteoforms are there?

      , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
      Nature Chemical Biology
      Springer Nature

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          <p class="first" id="P14">Despite decades of accumulated knowledge about proteins and their post-translational modifications (PTMs), numerous questions remain regarding their molecular composition and biological function. One of the most fundamental queries is the extent to which the combinations of DNA-, RNA- and PTM-level variations explode the complexity of the human proteome. Here, we outline what we know from current databases and measurement strategies including mass spectrometry–based proteomics. In doing so, we examine prevailing notions about the number of modifications displayed on human proteins and how they combine to generate the protein diversity underlying health and disease. We frame central issues regarding determination of protein-level variation and PTMs, including some paradoxes present in the field today. We use this framework to assess existing data and to ask the question, “How many distinct primary structures of proteins (proteoforms) are created from the 20,300 human genes?” We also explore prospects for improving measurements to better regularize protein-level biology and efficiently associate PTMs to function and phenotype. </p>

          Related collections

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Evolvability

            • Record: found
            • Abstract: found
            • Article: not found

            Widespread Expansion of Protein Interaction Capabilities by Alternative Splicing.

            While alternative splicing is known to diversify the functional characteristics of some genes, the extent to which protein isoforms globally contribute to functional complexity on a proteomic scale remains unknown. To address this systematically, we cloned full-length open reading frames of alternatively spliced transcripts for a large number of human genes and used protein-protein interaction profiling to functionally compare hundreds of protein isoform pairs. The majority of isoform pairs share less than 50% of their interactions. In the global context of interactome network maps, alternative isoforms tend to behave like distinct proteins rather than minor variants of each other. Interaction partners specific to alternative isoforms tend to be expressed in a highly tissue-specific manner and belong to distinct functional modules. Our strategy, applicable to other functional characteristics, reveals a widespread expansion of protein interaction capabilities through alternative splicing and suggests that many alternative "isoforms" are functionally divergent (i.e., "functional alloforms").
              • Record: found
              • Abstract: found
              • Article: not found

              The mitochondrial proteome and human disease.

              For nearly three decades, the sequence of the human mitochondrial genome (mtDNA) has provided a molecular framework for understanding maternally inherited diseases. However, the vast majority of human mitochondrial disorders are caused by nuclear genome defects, which is not surprising since the mtDNA encodes only 13 proteins. Advances in genomics, mass spectrometry, and computation have only recently made it possible to systematically identify the complement of over 1,000 proteins that comprise the mammalian mitochondrial proteome. Here, we review recent progress in characterizing the mitochondrial proteome and highlight insights into its complexity, tissue heterogeneity, evolutionary origins, and biochemical versatility. We then discuss how this proteome is being used to discover the genetic basis of respiratory chain disorders as well as to expand our definition of mitochondrial disease. Finally, we explore future prospects and challenges for using the mitochondrial proteome as a foundation for systems analysis of the organelle.

                Author and article information

                Journal
                Nature Chemical Biology
                Nat Chem Biol
                Springer Nature
                1552-4450
                1552-4469
                February 14 2018
                February 14 2018
                : 14
                : 3
                : 206-214
                Article
                10.1038/nchembio.2576
                5837046
                29443976
                d32dbc47-3b33-4617-89f0-c4ea6e12c23c
                © 2018
                History

                Comments

                Comment on this article

                Related Documents Log