6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glucocorticoid sensitivity of vasopressin mRNA levels in the paraventricular nucleus of the rat.

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Immunocytochemical studies have shown that adrenalectomy produces changes in the content and distribution of [arginine-8]vasopressin (AVP) immunoreactivity in the paraventricular nucleus of the hypothalamus. The purpose of this study was to determine whether manipulation of adrenal hormones affects the levels of AVP mRNA. In situ hybridization assays with highly specific synthetic oligodeoxyribonucleotide probes and immunocytochemistry were used to detect the distribution of AVP mRNA and AVP-immunoreactive perikarya. AVP mRNA is codistributed with AVP immunoreactivity in the posterior magnocellular subdivision of the paraventricular nucleus and its accessory nuclei, the supraoptic nucleus and the suprachiasmatic nucleus. In adrenalectomized rats, the density and distribution of the hybridization signal were increased in the paraventricular nucleus; a 2-fold increase in the area comprising the signal was observed. At the cellular level, silver grains were detected in corticotropin-releasing-factor-immunoreactive neurons throughout the medial parvocellular subdivision of the paraventricular nucleus. No changes were seen in the distribution of AVP mRNA in the supraoptic or suprachiasmatic nuclei. Treatment with dexamethasone prevented the increase in AVP mRNA produced by adrenalectomy. In contrast, adrenalectomy did not alter the hybridization signal obtained with a probe for alpha-tubulin mRNA. These results suggest, at the cellular level, that adrenalectomy induces a glucocorticoid-sensitive stimulation of AVP mRNA synthesis in the central nervous system. Thus, considerable plasticity in gene expression is retained in the hypothalamus of the adult rat.

          Related collections

          Author and article information

          Journal
          Proc. Natl. Acad. Sci. U.S.A.
          Proceedings of the National Academy of Sciences of the United States of America
          0027-8424
          0027-8424
          Feb 1986
          : 83
          : 4
          Article
          323028
          3456567

          Comments

          Comment on this article