12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Hub connectivity, neuronal diversity, and gene expression in the Caenorhabditis elegans connectome

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Studies of nervous system connectivity, in a wide variety of species and at different scales of resolution, have identified several highly conserved motifs of network organization. One such motif is a heterogeneous distribution of connectivity across neural elements, such that some elements act as highly connected and functionally important network hubs. These brain network hubs are also densely interconnected, forming a so-called rich club. Recent work in mouse has identified a distinctive transcriptional signature of neural hubs, characterized by tightly coupled expression of oxidative metabolism genes, with similar genes characterizing macroscale inter-modular hub regions of the human cortex. Here, we sought to determine whether hubs of the neuronal C. elegans connectome also show tightly coupled gene expression. Using open data on the chemical and electrical connectivity of 279 C. elegans neurons, and binary gene expression data for each neuron across 948 genes, we computed a correlated gene expression score for each pair of neurons, providing a measure of their gene expression similarity. We demonstrate that connections between hub neurons are the most similar in their gene expression while connections between nonhubs are the least similar. Genes with the greatest contribution to this effect are involved in glutamatergic and cholinergic signaling, and other communication processes. We further show that coupled expression between hub neurons cannot be explained by their neuronal subtype (i.e., sensory, motor, or interneuron), separation distance, chemically secreted neurotransmitter, birth time, pairwise lineage distance, or their topological module affiliation. Instead, this coupling is intrinsically linked to the identity of most hubs as command interneurons, a specific class of interneurons that regulates locomotion. Our results suggest that neural hubs may possess a distinctive transcriptional signature, preserved across scales and species, that is related to the involvement of hubs in regulating the higher-order behaviors of a given organism.

          Author summary

          Some elements of neural systems possess many more connections than others, marking them as network hubs. These hubs are often densely interconnected with each other, forming a so-called rich-club that is thought to support integrated function. Recent work in the mouse suggests that connected pairs of hubs show higher levels of transcriptional coupling than other pairs of brain regions. Here, we show that hub neurons of the nematode C. elegans also show tightly coupled gene expression and that this effect cannot be explained by the spatial proximity or anatomical location of hub neurons, their chemical composition, birth time, neuronal lineage or topological module affiliation. Instead, we find that elevated coexpression is driven by the identity of most hubs of the C. elegans connectome as command interneurons, a specific functional class of neurons that regulate locomotion. These findings suggest that coupled gene expression is a highly conserved genomic signature of neural hubs that may be related to the specific functional role that hubs play in broader network function.

          Related collections

          Most cited references92

          • Record: found
          • Abstract: not found
          • Article: not found

          Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A mesoscale connectome of the mouse brain.

            Comprehensive knowledge of the brain's wiring diagram is fundamental for understanding how the nervous system processes information at both local and global scales. However, with the singular exception of the C. elegans microscale connectome, there are no complete connectivity data sets in other species. Here we report a brain-wide, cellular-level, mesoscale connectome for the mouse. The Allen Mouse Brain Connectivity Atlas uses enhanced green fluorescent protein (EGFP)-expressing adeno-associated viral vectors to trace axonal projections from defined regions and cell types, and high-throughput serial two-photon tomography to image the EGFP-labelled axons throughout the brain. This systematic and standardized approach allows spatial registration of individual experiments into a common three dimensional (3D) reference space, resulting in a whole-brain connectivity matrix. A computational model yields insights into connectional strength distribution, symmetry and other network properties. Virtual tractography illustrates 3D topography among interconnected regions. Cortico-thalamic pathway analysis demonstrates segregation and integration of parallel pathways. The Allen Mouse Brain Connectivity Atlas is a freely available, foundational resource for structural and functional investigations into the neural circuits that support behavioural and cognitive processes in health and disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rich-club organization of the human connectome.

              The human brain is a complex network of interlinked regions. Recent studies have demonstrated the existence of a number of highly connected and highly central neocortical hub regions, regions that play a key role in global information integration between different parts of the network. The potential functional importance of these "brain hubs" is underscored by recent studies showing that disturbances of their structural and functional connectivity profile are linked to neuropathology. This study aims to map out both the subcortical and neocortical hubs of the brain and examine their mutual relationship, particularly their structural linkages. Here, we demonstrate that brain hubs form a so-called "rich club," characterized by a tendency for high-degree nodes to be more densely connected among themselves than nodes of a lower degree, providing important information on the higher-level topology of the brain network. Whole-brain structural networks of 21 subjects were reconstructed using diffusion tensor imaging data. Examining the connectivity profile of these networks revealed a group of 12 strongly interconnected bihemispheric hub regions, comprising the precuneus, superior frontal and superior parietal cortex, as well as the subcortical hippocampus, putamen, and thalamus. Importantly, these hub regions were found to be more densely interconnected than would be expected based solely on their degree, together forming a rich club. We discuss the potential functional implications of the rich-club organization of the human connectome, particularly in light of its role in information integration and in conferring robustness to its structural core.
                Bookmark

                Author and article information

                Contributors
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Data curationRole: Formal analysisRole: InvestigationRole: MethodologyRole: SoftwareRole: VisualizationRole: Writing – original draftRole: Writing – review & editing
                Role: ConceptualizationRole: Writing – review & editing
                Role: ConceptualizationRole: Funding acquisitionRole: Project administrationRole: SupervisionRole: Writing – original draftRole: Writing – review & editing
                Role: Editor
                Journal
                PLoS Comput Biol
                PLoS Comput. Biol
                plos
                ploscomp
                PLoS Computational Biology
                Public Library of Science (San Francisco, CA USA )
                1553-734X
                1553-7358
                February 2018
                12 February 2018
                : 14
                : 2
                : e1005989
                Affiliations
                [1 ] Brain and Mental Health Laboratory, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
                [2 ] Development and Stem Cells Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, VIC, Australia
                Emory University School of Medicine, UNITED STATES
                Author notes

                The authors have declared that no competing interests exist.

                Author information
                http://orcid.org/0000-0003-4098-7084
                http://orcid.org/0000-0002-3003-4055
                Article
                PCOMPBIOL-D-17-01749
                10.1371/journal.pcbi.1005989
                5825174
                29432412
                d330b6f7-e600-44a2-9ced-481aaa083893
                © 2018 Arnatkevic̆iūtė et al

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 October 2017
                : 19 January 2018
                Page count
                Figures: 8, Tables: 0, Pages: 32
                Funding
                Funded by: funder-id http://dx.doi.org/10.13039/501100000923, Australian Research Council;
                Award ID: FT130100589
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100000925, National Health and Medical Research Council;
                Award ID: 3251213
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100000925, National Health and Medical Research Council;
                Award ID: 1089718
                Award Recipient :
                Funded by: funder-id http://dx.doi.org/10.13039/501100000925, National Health and Medical Research Council;
                Award ID: GNT1105374
                Award Recipient :
                AF was supported by the Australian Research Council http://www.arc.gov.au/ (ID: FT130100589) and the National Health and Medical Research Council https://www.nhmrc.gov.au/ (ID: 3251213). BDF was supported by a National Health and Medical Research Council ( https://www.nhmrc.gov.au/) Early Career Fellowship (1089718). RP was supported by Monash University Biomedicine Discovery Fellowship, National Health and Medical Research Council https://www.nhmrc.gov.au/ Project Grant (GNT1105374) and veski innovation fellowship ( https://www.veski.org.au/home): VIF 23 to RP. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Biology and Life Sciences
                Genetics
                Gene Expression
                Research and Analysis Methods
                Experimental Organism Systems
                Model Organisms
                Caenorhabditis Elegans
                Research and Analysis Methods
                Model Organisms
                Caenorhabditis Elegans
                Research and Analysis Methods
                Experimental Organism Systems
                Animal Models
                Caenorhabditis Elegans
                Biology and Life Sciences
                Organisms
                Eukaryota
                Animals
                Invertebrates
                Nematoda
                Caenorhabditis
                Caenorhabditis Elegans
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Motor Neurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Motor Neurons
                Biology and Life Sciences
                Cell Biology
                Cellular Types
                Animal Cells
                Neurons
                Interneurons
                Biology and Life Sciences
                Neuroscience
                Cellular Neuroscience
                Neurons
                Interneurons
                Biology and Life Sciences
                Neuroscience
                Brain Mapping
                Connectomics
                Biology and Life Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Connectomics
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Neuroanatomy
                Connectomics
                Biology and Life Sciences
                Neuroscience
                Neuroanatomy
                Connectomics
                Computer and Information Sciences
                Neural Networks
                Biology and Life Sciences
                Neuroscience
                Neural Networks
                Biology and Life Sciences
                Anatomy
                Nervous System
                Synapses
                Medicine and Health Sciences
                Anatomy
                Nervous System
                Synapses
                Biology and Life Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Synapses
                Medicine and Health Sciences
                Physiology
                Electrophysiology
                Neurophysiology
                Synapses
                Biology and Life Sciences
                Neuroscience
                Neurophysiology
                Synapses
                Custom metadata
                vor-update-to-uncorrected-proof
                2018-02-23
                Data used for analysis in this work were obtained from publicly available sources, and can be downloaded from an accompanying figshare repository (figshare.com/s/797199619fbabdab8c86). Code to process this data and reproduce all figures and analyses presented here is on github (github.com/BMHLab/CElegansConnectomeGeneExpression).

                Quantitative & Systems biology
                Quantitative & Systems biology

                Comments

                Comment on this article