4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Correction of the cystic fibrosis defect in vitro by retrovirus-mediated gene transfer

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have used retrovirus-mediated gene transfer to demonstrate complementation of the cystic fibrosis (CF) defect in vitro. Amphotropic retroviruses were used to transduce a functional cystic fibrosis transmembrane conductance regulator (CFTR) cDNA into CFPAC-1, a pancreatic adenocarcinoma cell line derived from a patient with CF that stably expresses the chloride transport abnormalities characteristic of CF. CFPAC-1 cells were exposed to control virus (PLJ) and CFTR-expressing virus (PLJ-CFTR); viral-transduced clones were isolated and subjected to molecular and physiologic analysis. RNA analysis detected a viral-derived CFTR transcript in all of the PLJ-CFTR clones that contained unrearranged proviral sequences. Agents that increase intracellular cAMP stimulated 125I efflux in PLJ-CFTR clones but not PLJ clones. Whole-cell patch-clamp performed on three responding clones showed that the anion efflux responses were due to cAMP stimulation of Cl conductance. Our findings indicate that expression of the normal CFTR gene confers cAMP-dependent Cl channel regulation on CF epithelial cells.

          Related collections

          Most cited references15

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of the cystic fibrosis gene: genetic analysis.

          Approximately 70 percent of the mutations in cystic fibrosis patients correspond to a specific deletion of three base pairs, which results in the loss of a phenylalanine residue at amino acid position 508 of the putative product of the cystic fibrosis gene. Extended haplotype data based on DNA markers closely linked to the putative disease gene locus suggest that the remainder of the cystic fibrosis mutant gene pool consists of multiple, different mutations. A small set of these latter mutant alleles (about 8 percent) may confer residual pancreatic exocrine function in a subgroup of patients who are pancreatic sufficient. The ability to detect mutations in the cystic fibrosis gene at the DNA level has important implications for genetic diagnosis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of the cystic fibrosis gene: chromosome walking and jumping.

            An understanding of the basic defect in the inherited disorder cystic fibrosis requires cloning of the cystic fibrosis gene and definition of its protein product. In the absence of direct functional information, chromosomal map position is a guide for locating the gene. Chromosome walking and jumping and complementary DNA hybridization were used to isolate DNA sequences, encompassing more than 500,000 base pairs, from the cystic fibrosis region on the long arm of human chromosome 7. Several transcribed sequences and conserved segments were identified in this cloned region. One of these corresponds to the cystic fibrosis gene and spans approximately 250,000 base pairs of genomic DNA.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Structural model of ATP-binding proteins associated with cystic fibrosis, multidrug resistance and bacterial transport.

              The ATP-binding cassette (ABC) superfamily of transport systems now includes over thirty proteins that share extensive sequence similarity and domain organization. This superfamily includes the well characterized periplasmic binding protein-dependent uptake systems of prokaryotes, bacterial exporters, and eukaryotic proteins including the P-glycoprotein associated with multidrug resistance in tumours (MDR), the STE6 gene product that mediates export of yeast a-factor mating pheromone, pfMDR that is implicated in chloroquine resistance of the malarial parasite, and the product of the cystic fibrosis gene (CFTR). Here we present a tertiary structure model of the ATP-binding cassettes characteristic of this class of transport system, based on similarities between the predicted secondary structures of members of this family and the previously determined structure of adenylate kinase. This model has implications for both the molecular basis of transport and cystic fibrosis and provides a framework for further experimentation.
                Bookmark

                Author and article information

                Journal
                Cell
                Cell
                Elsevier BV
                00928674
                September 1990
                September 1990
                : 62
                : 6
                : 1227-1233
                Article
                10.1016/0092-8674(90)90398-X
                1698126
                d338f577-a98c-4398-8e21-a324d424fe5b
                © 1990

                https://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article