29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of typical and atypical antipsychotic drugs on gene expression profiles in the liver of schizophrenia subjects

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Although much progress has been made on antipsychotic drug development, precise mechanisms behind the action of typical and atypical antipsychotics are poorly understood.

          Methods

          We performed genome-wide expression profiling to study effects of typical antipsychotics and atypical antipsychotics in the postmortem liver of schizophrenia patients using microarrays (Affymetrix U133 plus2.0). We classified the subjects into typical antipsychotics (n = 24) or atypical antipsychotics (n = 26) based on their medication history, and compared gene expression profiles with unaffected controls (n = 34). We further analyzed individual antipsychotic effects on gene expression by sub-classifying the subjects into four major antipsychotic groups including haloperidol, phenothiazines, olanzapine and risperidone.

          Results

          Typical antipsychotics affected genes associated with nuclear protein, stress responses and phosphorylation, whereas atypical antipsychotics affected genes associated with golgi/endoplasmic reticulum and cytoplasm transport. Comparison between typical antipsychotics and atypical antipsychotics further identified genes associated with lipid metabolism and mitochondrial function. Analyses on individual antipsychotics revealed a set of genes (151 transcripts, FDR adjusted p < 0.05) that are differentially regulated by four antipsychotics, particularly by phenothiazines, in the liver of schizophrenia patients.

          Conclusion

          Typical antipsychotics and atypical antipsychotics affect different genes and biological function in the liver. Typical antipsychotic phenothiazines exert robust effects on gene expression in the liver that may lead to liver toxicity. The genes found in the current study may benefit antipsychotic drug development with better therapeutic and side effect profiles.

          Related collections

          Most cited references66

          • Record: found
          • Abstract: found
          • Article: not found

          DAVID: Database for Annotation, Visualization, and Integrated Discovery.

          Functional annotation of differentially expressed genes is a necessary and critical step in the analysis of microarray data. The distributed nature of biological knowledge frequently requires researchers to navigate through numerous web-accessible databases gathering information one gene at a time. A more judicious approach is to provide query-based access to an integrated database that disseminates biologically rich information across large datasets and displays graphic summaries of functional information. Database for Annotation, Visualization, and Integrated Discovery (DAVID; http://www.david.niaid.nih.gov) addresses this need via four web-based analysis modules: 1) Annotation Tool - rapidly appends descriptive data from several public databases to lists of genes; 2) GoCharts - assigns genes to Gene Ontology functional categories based on user selected classifications and term specificity level; 3) KeggCharts - assigns genes to KEGG metabolic processes and enables users to view genes in the context of biochemical pathway maps; and 4) DomainCharts - groups genes according to PFAM conserved protein domains. Analysis results and graphical displays remain dynamically linked to primary data and external data repositories, thereby furnishing in-depth as well as broad-based data coverage. The functionality provided by DAVID accelerates the analysis of genome-scale datasets by facilitating the transition from data collection to biological meaning.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Second-generation (atypical) antipsychotics and metabolic effects: a comprehensive literature review.

            Increasing numbers of reports concerning diabetes, ketoacidosis, hyperglycaemia and lipid dysregulation in patients treated with second-generation (or atypical) antipsychotics have raised concerns about a possible association between these metabolic effects and treatment with these medications. This comprehensive literature review considers the evidence for and against an association between glucose or lipid dysregulation and eight separate second-generation antipsychotics currently available in the US and/or Europe, specifically clozapine, olanzapine, risperidone, quetiapine, zotepine, amisulpride, ziprasidone and aripiprazole. This review also includes an assessment of the potential contributory role of treatment-induced weight gain in conferring risk for hyperglycaemia and dyslipidaemia during treatment with different antipsychotic medications. Substantial evidence from a variety of human populations, including some recent confirmatory evidence in treated psychiatric patients, indicates that increased adiposity is associated with a variety of adverse physiological effects, including decreases in insulin sensitivity and changes in plasma glucose and lipid levels. Comparison of mean weight changes and relative percentages of patients experiencing specific levels of weight increase from controlled, randomised clinical trials indicates that weight gain liability varies significantly across the different second generation antipsychotic agents. Clozapine and olanzapine treatment are associated with the greatest risk of clinically significant weight gain, with other agents producing relatively lower levels of risk. Risperidone, quetiapine, amisulpride and zotepine generally show low to moderate levels of mean weight gain and a modest risk of clinically significant increases in weight. Ziprasidone and aripiprazole treatment are generally associated with minimal mean weight gain and the lowest risk of more significant increases. Published studies including uncontrolled observations, large retrospective database analyses and controlled experimental studies, including randomised clinical trials, indicate that the different second-generation antipsychotics are associated with differing effects on glucose and lipid metabolism. These studies offer generally consistent evidence that clozapine and olanzapine treatment are associated with an increased risk of diabetes mellitus and dyslipidaemia. Inconsistent results, and a generally smaller effect in studies where an effect is reported, suggest limited if any increased risk for treatment-induced diabetes mellitus and dyslipidaemia during risperidone treatment, despite a comparable volume of published data. A similarly smaller and inconsistent signal suggests limited if any increased risk of diabetes or dyslipidaemia during quetiapine treatment, but this is based on less published data than is available for risperidone. The absence of retrospective database studies, and little or no relevant published data from clinical trials, makes it difficult to draw conclusions concerning risk for zotepine or amisulpride, although amisulpride appears to have less risk of treatment-emergent dyslipidaemia in comparison to olanzapine. With increasing data from clinical trials but little or no currently published data from large retrospective database analyses, there is no evidence at this time to suggest that ziprasidone and aripiprazole treatment are associated with an increase in risk for diabetes, dyslipidaemia or other adverse effects on glucose or lipid metabolism. In general, the rank order of risk observed for the second-generation antipsychotic medications suggests that the differing weight gain liability of atypical agents contributes to the differing relative risk of insulin resistance, dyslipidaemia and hyperglycaemia. This would be consistent with effects observed in nonpsychiatric samples, where risk for adverse metabolic changes tends to increase with increasing adiposity. From this perspective, a possible increase in risk would be predicted to occur in association with any treatment that produces increases in weight and adiposity. However, case reports tentatively suggest that substantial weight gain or obesity may not be a factor in up to one-quarter of cases of new-onset diabetes that occur during treatment. Pending further testing from preclinical and clinical studies, limited controlled studies support the hypothesis that clozapine and olanzapine may have a direct effect on glucose regulation independent of adiposity. The results of studies in this area are relevant to primary and secondary prevention efforts that aim to address the multiple factors that contribute to increased prevalence of type 2 diabetes mellitus and cardiovascular disease in populations that are often treated with second-generation antipsychotic medications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Atypical antipsychotics: mechanism of action.

              Although the principal brain target that all antipsychotic drugs attach to is the dopamine D2 receptor, traditional or typical antipsychotics, by attaching to it, induce extrapyramidal signs and symptoms (EPS). They also, by binding to the D2 receptor, elevate serum prolactin. Atypical antipsychotics given in dosages within the clinically effective range do not bring about these adverse clinical effects. To understand how these drugs work, it is important to examine the atypical antipsychotics' mechanism of action and how it differs from that of the more typical drugs. This review analyzes the affinities, the occupancies, and the dissociation time-course of various antipsychotics at dopamine D2 receptors and at serotonin (5-HT) receptors, both in the test tube and in live patients. Of the 31 antipsychotics examined, the older traditional antipsychotics such as trifluperazine, pimozide, chlorpromazine, fluphenazine, haloperidol, and flupenthixol bind more tightly than dopamine itself to the dopamine D2 receptor, with dissociation constants that are lower than that for dopamine. The newer, atypical antipsychotics such as quetiapine, remoxipride, clozapine, olanzapine, sertindole, ziprasidone, and amisulpride all bind more loosely than dopamine to the dopamine D2 receptor and have dissociation constants higher than that for dopamine. These tight and loose binding data agree with the rates of antipsychotic dissociation from the human-cloned D2 receptor. For instance, radioactive haloperidol, chlorpromazine, and raclopride all dissociate very slowly over a 30-minute time span, while radioactive quetiapine, clozapine, remoxipride, and amisulpride dissociate rapidly, in less than 60 seconds. These data also match clinical brain-imaging findings that show haloperidol remaining constantly bound to D2 in humans undergoing 2 positron emission tomography (PET) scans 24 hours apart. Conversely, the occupation of D2 by clozapine or quetiapine has mostly disappeared after 24 hours. Atypicals clinically help patients by transiently occupying D2 receptors and then rapidly dissociating to allow normal dopamine neurotransmission. This keeps prolactin levels normal, spares cognition, and obviates EPS. One theory of atypicality is that the newer drugs block 5-HT2A receptors at the same time as they block dopamine receptors and that, somehow, this serotonin-dopamine balance confers atypicality. This, however, is not borne out by the results. While 5-HT2A receptors are readily blocked at low dosages of most atypical antipsychotic drugs (with the important exceptions of remoxipride and amisulpride, neither of which is available for use in Canada) the dosages at which this happens are below those needed to alleviate psychosis. In fact, the antipsychotic threshold occupancy of D2 for antipsychotic action remains at about 65% for both typical and atypical antipsychotic drugs, regardless of whether 5-HT2A receptors are blocked or not. At the same time, the antipsychotic threshold occupancy of D2 for eliciting EPS remains at about 80% for both typical and atypical antipsychotics, regardless of the occupancy of 5-HT2A receptors. The "fast-off-D2" theory, on the other hand, predicts which antipsychotic compounds will or will not produce EPS and hyperprolactinemia and which compounds present a relatively low risk for tardive dyskinesia. This theory also explains why L-dopa psychosis responds to low atypical antipsychotic dosages, and it suggests various individualized treatment strategies.
                Bookmark

                Author and article information

                Journal
                BMC Psychiatry
                BMC Psychiatry
                BioMed Central
                1471-244X
                2009
                16 September 2009
                : 9
                : 57
                Affiliations
                [1 ]Stanley Laboratory of Brain Research, Rockville, MD 20850, USA
                [2 ]Elashoff Consulting, Redwood City, CA 94065, USA
                [3 ]Departments of Psychiatry and Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
                [4 ]Stanley Laboratory of Developmental Neurovirology, Johns Hopkins University, School of Medicine, 600 North Wolfe Street, Blalock 1105, Baltimore, MD 21287, USA
                Article
                1471-244X-9-57
                10.1186/1471-244X-9-57
                2749837
                19758435
                d356e9e3-258b-4b24-a398-5a367080ed9a
                Copyright © 2009 Choi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 18 March 2009
                : 16 September 2009
                Categories
                Research Article

                Clinical Psychology & Psychiatry
                Clinical Psychology & Psychiatry

                Comments

                Comment on this article