12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Expression of ecdysteroids and cytochrome P450 enzymes during lipid turnover and reproduction in Calanus finmarchicus (Crustacea: Copepoda).

      General and Comparative Endocrinology
      Animals, Body Weight, genetics, physiology, Copepoda, metabolism, Cytochrome P-450 Enzyme System, Ecdysteroids, Female, Gene Expression Regulation, Developmental, Lipid Metabolism, Male, RNA, Messenger, Reproduction

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The marine copepod Calanus finmarchicus is the most abundant zooplankton species in the northern regions of the Atlantic Ocean and the Barents Sea. Very little is known about molecular regulation of hormone metabolism, moulting and reproduction in copepods. To investigate these processes, we sampled adult male and female copepods (females at three distinct reproductive stages) and copepodites stage five (CV) from the culture at SINTEF/NTNU Sealab. Copepods were individually photographed, analyzed biometrically (body size, length and lipid storage size) and for ecdysteroid concentrations. In addition, we analyzed copepods for gene expression of three putative cytochrome P450 enzymes possibly involved in ecdysteroid regulation: CYP301A1, CYP305A1 and CYP330A1. The CV group exhibited the highest ecdysteroid concentrations and the largest lipid storage size, and a significant positive correlation was found between these parameters. Also, two of the P450 enzymes (CYP305A1 and CYP330A1) were more highly expressed at CV than at the adult stage, suggesting that these P450 enzymes are involved in ecdysteroid synthesis and lipid storage regulation. The expression of CYP330A1 was higher in newly moulted females than in females that had produced eggs. In addition, we observed that ecdysteroid concentrations were higher in females with large egg sacs, suggesting that ecdysteroids may be involved in egg maturation and reproduction. The CYP301A1 was more highly expressed in males and post-spawning females, and may be involved in ecdysteroid degradation since these groups also exhibited the lowest ecdysteroid concentrations.

          Related collections

          Author and article information

          Comments

          Comment on this article