31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Constitutive activation of the FLT3 receptor tyrosine kinase, either by internal tandem duplication (ITD) of the juxtamembrane region or by point mutations in the second tyrosine kinase domain (TKD), has been described in patients with acute myelogenous leukemia (AML). We analyzed the prevalence and the potential prognostic impact of FLT3 mutations in 979 AML patients. Results were correlated with cytogenetic data and the clinical response. FLT3-ITD mutations were found in 20.4% and FLT3-TKD mutations in 7.7% of the patients. Each mutation was associated with similar clinical characteristics and was more prevalent in patients with normal karyotype. Significantly more FLT3 aberrations were found in patients with FAB M5, and fewer were found in patients with FAB M2 and M6. Although less frequent in patients with cytogenetic aberrations, FLT3-ITDs were found in 13 of 42 patients with t(15;17) and in 9 of 10 patients with t(6;9). The prevalence of the ITD allele on the DNA level was heterogeneous, ranging from faint mutant bands in some patients to predominant mutant bands in others. Based on quantitative analysis, the mutant–wild-type (wt) ratio ranged from 0.03 to 32.56 (median, 0.78). Patients with a high mutant/wt ratio (ie, greater than 0.78) had significantly shorter overall and disease-free survival, whereas survival in patients with ratios below 0.78 did not differ from those without FLT3 aberrations. Multivariate analysis confirmed a high mutant/wt ratio to be a strong independent prognostic factor. Taken together, these data confirm that FLT mutations represent a common alteration in adult AML. Constitutive activation may be associated with monocytoid differentiation. A high mutant/wt ratio in ITD-positive patients appears to have a major impact on the prognostic relevance.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Genetic instabilities in human cancers.

          Whether and how human tumours are genetically unstable has been debated for decades. There is now evidence that most cancers may indeed be genetically unstable, but that the instability exists at two distinct levels. In a small subset of tumours, the instability is observed at the nucleotide level and results in base substitutions or deletions or insertions of a few nucleotides. In most other cancers, the instability is observed at the chromosome level, resulting in losses and gains of whole chromosomes or large portions thereof. Recognition and comparison of these instabilities are leading to new insights into tumour pathogenesis.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Karyotypic analysis predicts outcome of preremission and postremission therapy in adult acute myeloid leukemia: a Southwest Oncology Group/Eastern Cooperative Oncology Group Study.

            The associations of cytogenetics with complete remission (CR) rates, overall survival (OS), and outcomes after CR were studied in 609 previously untreated AML patients younger than 56 years old in a clinical trial comparing 3 intensive postremission therapies: intensive chemotherapy, autologous transplantation (ABMT), or allogeneic bone marrow transplantation (alloBMT) from matched related donors. Patients were categorized into favorable, intermediate, unfavorable, and unknown cytogenetic risk groups based on pretreatment karyotypes. CR rates varied significantly (P <.0001) among the 4 groups: favorable, 84% (95% confidence interval [CI], 77%-90%); intermediate, 76% (CI, 71%-81%); unfavorable, 55% (CI, 48%-63%); and unknown, 54% (CI, 33%-74%). There was similar significant heterogeneity of OS (P <.0001), with the estimated relative risk of death from any cause being 1.50 (CI, 1.10-2.05), 3. 33 (CI, 2.43-4.55), and 2.66 (CI, 1.59-4.45) for the intermediate, unfavorable, and unknown risk groups, respectively, compared with the favorable group. In multivariate analyses, the effects of cytogenetic risk status on CR rate and OS could not be explained by other patient or disease characteristics. Among postremission patients, survival from CR varied significantly among favorable, intermediate, and unfavorable groups (P =.0003), with significant evidence of interaction (P =.017) between the effects of treatment and cytogenetic risk status on survival. Patients with favorable cytogenetics did significantly better following ABMT and alloBMT than with chemotherapy alone, whereas patients with unfavorable cytogenetics did better with alloBMT. Cytogenetic risk status is a significant factor in predicting response of AML patients to therapy; however, to tighten treatment correlates within genetically defined AML subsets, a significantly larger leukemia cytogenetic database is warranted.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Flt3 mutations from patients with acute myeloid leukemia induce transformation of 32D cells mediated by the Ras and STAT5 pathways.

              Somatic mutations of the receptor tyrosine kinase Flt3 consisting of internal tandem duplications (ITD) occur in 20% of patients with acute myeloid leukemia. They are associated with a poor prognosis of the disease. In this study, we characterized the oncogenic potential and signaling properties of Flt3 mutations. We constructed chimeric molecules that consisted of the murine Flt3 backbone and a 510-base pair human Flt3 fragment, which contained either 4 different ITD mutants or the wild-type coding sequence. Flt3 isoforms containing ITD mutations (Flt3-ITD) induced factor-independent growth and resistance to radiation-induced apoptosis in 32D cells. Cells containing Flt3-ITD, but not those containing wild-type Flt3 (Flt3-WT), formed colonies in methylcellulose. Injection of 32D/Flt3-ITD induced rapid development of a leukemia-type disease in syngeneic mice. Flt3-ITD mutations exhibited constitutive autophosphorylation of the immature form of the Flt3 receptor. Analysis of the involved signal transduction pathways revealed that Flt3-ITD only slightly activated the MAP kinases Erk1 and 2 and the protein kinase B (Akt) in the absence of ligand and retained ligand-induced activation of these enzymes. However, Flt3-ITD led to strong factor-independent activation of STAT5. The relative importance of the STAT5 and Ras pathways for ITD-induced colony formation was assessed by transfection of dominant negative (dn) forms of these proteins: transfection of dnSTAT5 inhibited colony formation by 50%. Despite its weak constitutive activation by Flt3-ITD, dnRas also strongly inhibited Flt3-ITD-mediated colony formation. Taken together, Flt3-ITD mutations induce factor-independent growth and leukemogenesis of 32D cells that are mediated by the Ras and STAT5 pathways. (Blood. 2000;96:3907-3914)
                Bookmark

                Author and article information

                Journal
                Blood
                American Society of Hematology
                1528-0020
                0006-4971
                June 15 2002
                June 15 2002
                : 99
                : 12
                : 4326-4335
                Affiliations
                [1 ] From the Medizinische Klinik und Poliklinik I, Universitätsklinikum Carl Gustav Carus der Technischen Universität, Dresden; and the Abteilung Hämatologie, Onkologie und Immunologie, Philipps Universität Marburg, Germany.
                Article
                10.1182/blood.V99.12.4326
                12036858
                d361c84e-6fa4-47a8-8772-4ffad7ee329e
                © 2002
                History

                Molecular medicine,Neurosciences
                Molecular medicine, Neurosciences

                Comments

                Comment on this article