93
views
0
recommends
+1 Recommend
0 collections
    4
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting EGFR/HER2 pathways enhances the antiproliferative effect of gemcitabine in biliary tract and gallbladder carcinomas

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Advanced biliary tract carcinomas (BTCs) have poor prognosis and limited therapeutic options. Therefore, it is crucial to combine standard therapies with molecular targeting. In this study EGFR, HER2, and their molecular transducers were analysed in terms of mutations, amplifications and over-expression in a BTC case series. Furthermore, we tested the efficacy of drugs targeting these molecules, as single agents or in combination with gemcitabine, the standard therapeutic agent against BTC.

          Methods

          Immunohistochemistry, FISH and mutational analysis were performed on 49 BTC samples of intrahepatic (ICCs), extrahepatic (ECCs), and gallbladder (GBCs) origin. The effect on cell proliferation of different EGFR/HER2 pathway inhibitors as single agents or in combination with gemcitabine was investigated on BTC cell lines. Western blot analyses were performed to investigate molecular mechanisms of targeted drugs.

          Results

          EGFR is expressed in 100% of ICCs, 52.6% of ECCs, and in 38.5% of GBCs. P-MAPK and p-Akt are highly expressed in ICCs (>58% of samples), and to a lower extent in ECCs and GBCs (<46%), indicating EGFR pathway activation. HER2 is overexpressed in 10% of GBCs (with genomic amplification), and 26.3% of ECCs (half of which has genomic amplification). EGFR or its signal transducers are mutated in 26.5% of cases: 4 samples bear mutations of PI3K (8.2%), 3 cases (6.1%) in K-RAS, 4 (8.2%) in B-RAF, and 2 cases (4.1%) in PTEN, but no loss of PTEN expression is detected. EGI-1 cell line is highly sensitive to gemcitabine, TFK1 and TGBC1-TKB cell lines are responsive and HuH28 cell line is resistant. In EGI-1 cells, combination with gefitinib further increases the antiproliferative effect of gemcitabine. In TFK1 and TGBC1-TKB cells, the efficacy of gemcitabine is increased with addiction of sorafenib and everolimus. In TGBC1-TKB cells, lapatinib also has a synergic effect with gemcitabine. HuH28 becomes responsive if treated in combination with erlotinib. Moreover, HuH28 cells are sensitive to lapatinib as a single agent. Molecular mechanisms were confirmed by western blot analysis.

          Conclusion

          These data demonstrate that EGFR and HER2 pathways are suitable therapeutic targets for BTCs. The combination of gemcitabine with drugs targeting these pathways gives encouraging results and further clinical studies could be warranted.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer.

          Mapping of homozygous deletions on human chromosome 10q23 has led to the isolation of a candidate tumor suppressor gene, PTEN, that appears to be mutated at considerable frequency in human cancers. In preliminary screens, mutations of PTEN were detected in 31% (13/42) of glioblastoma cell lines and xenografts, 100% (4/4) of prostate cancer cell lines, 6% (4/65) of breast cancer cell lines and xenografts, and 17% (3/18) of primary glioblastomas. The predicted PTEN product has a protein tyrosine phosphatase domain and extensive homology to tensin, a protein that interacts with actin filaments at focal adhesions. These homologies suggest that PTEN may suppress tumor cell growth by antagonizing protein tyrosine kinases and may regulate tumor cell invasion and metastasis through interactions at focal adhesions.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Mutations of the epidermal growth factor receptor gene in lung cancer: biological and clinical implications.

            Recently it has been reported that mutations in the tyrosine kinase domain of the epidermal growth factor receptor(EGFR) gene occur in a subset of patients with lung cancer showing a dramatic response to EGFR tyrosine kinase inhibitors. To gain further insights in the role of EGFR in lung carcinogenesis, we sequenced exons 18-21 of the tyrosine kinase domain using total RNA extracted from unselected 277 patients with lung cancer who underwent surgical resection and correlated the results with clinical and pathologic features. EGFR mutations were present in 111 patients (40%). Fifty-two were in-frame deletions around codons 746-750 in exon 19, 54 were point mutations including 49 at codon 858 in exon 21 and 4 at codon 719 in exon 18, and 5 were duplications/insertions mainly in exon 20. They were significantly more frequent in female (P < 0.001), adenocarcinomas (P = 0.0013), and in never-smokers (P < 0.001). Multivariate analysis suggested EGFR mutations were independently associated with adenocarcinoma histology (P = 0.0012) and smoking status (P < 0.001), but not with female gender (P = 0.9917). In adenocarcinomas, EGFR mutations were more frequent in well to moderately differentiated tumors (P < 0.001) but were independent of patient age, disease stages, or patient survival. KRAS and TP53 mutations were present in 13 and 41%, respectively. EGFR mutations never occurred in tumors with KRAS mutations, whereas EGFR mutations were independent of TP53 mutations. EGFR mutations define a distinct subset of pulmonary adenocarcinoma without KRAS mutations, which is not caused by tobacco carcinogens.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Activity of the dual kinase inhibitor lapatinib (GW572016) against HER-2-overexpressing and trastuzumab-treated breast cancer cells.

              Lapatinib (GW572016) is a selective inhibitor of both epidermal growth factor receptor (EGFR) and HER-2 tyrosine kinases. Here, we explore the therapeutic potential of lapatinib by testing its effect on tumor cell growth in a panel of 31 characterized human breast cancer cell lines, including trastuzumab-conditioned HER-2-positive cell lines. We further characterize its activity in combination with trastuzumab and analyze whether EGFR and HER-2 expression or changes induced in the activation of EGFR, HER-2, Raf, AKT, or extracellular signal-regulated kinase (ERK) are markers of drug activity. We report that concentration-dependent antiproliferative effects of lapatinib were seen in all breast cancer cell lines tested but varied significantly between individual cell lines with up to 1,000-fold difference in the IC(50)s (range, 0.010-18.6 micromol/L). Response to lapatinib was significantly correlated with HER-2 expression and its ability to inhibit HER-2, Raf, AKT, and ERK phosphorylation. Long-term in vivo lapatinib studies were conducted with human breast cancer xenografts in athymic mice. Treatment over 77 days resulted in a sustained and significant reduction in xenograft volume compared with untreated controls. For the combination of lapatinib plus trastuzumab, synergistic drug interactions were observed in four different HER-2-overexpressing cell lines. Moreover, lapatinib retained significant in vitro activity against cell lines selected for long-term outgrowth (>9 months) in trastuzumab-containing (100 microg/mL) culture medium. These observations provide a clear biological rationale to test lapatinib as a single agent or in combination with trastuzumab in HER-2-overexpressing breast cancer and in patients with clinical resistance to trastuzumab.
                Bookmark

                Author and article information

                Journal
                BMC Cancer
                BMC Cancer
                BioMed Central
                1471-2407
                2010
                18 November 2010
                : 10
                : 631
                Affiliations
                [1 ]Department of Medical Oncology, University of Torino Medical School, Institute for Cancer Research and Treatment, (str. Provinciale 142 km 3.95), Candiolo, (10060), Italy
                [2 ]Unit of Pathology, Institute for Cancer Research and Treatment, (str. Provinciale 142 km 3.95), Candiolo, (10060), Italy
                [3 ]Laboratory of Cancer Genomics, Fondazione Edo ed Elvo Tempia Valenta", (via Malta 3), Biella, (13900), Italy
                [4 ]Laboratory of Molecular Genetics, The Oncogenomics Center, University of Torino Medical School, Institute for Cancer Research and Treatment, (str. Provinciale 142 km 3.95), Candiolo, (10060), Italy
                Article
                1471-2407-10-631
                10.1186/1471-2407-10-631
                3000850
                21087480
                d3640816-d5d3-4603-89f9-dffecceb3234
                Copyright ©2010 Pignochino et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 24 September 2009
                : 18 November 2010
                Categories
                Research Article

                Oncology & Radiotherapy
                Oncology & Radiotherapy

                Comments

                Comment on this article