26
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Structure and Pathology of Tau Protein in Alzheimer Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Alzheimer's disease (AD) is the most common type of dementia. In connection with the global trend of prolonging human life and the increasing number of elderly in the population, the AD becomes one of the most serious health and socioeconomic problems of the present. Tau protein promotes assembly and stabilizes microtubules, which contributes to the proper function of neuron. Alterations in the amount or the structure of tau protein can affect its role as a stabilizer of microtubules as well as some of the processes in which it is implicated. The molecular mechanisms governing tau aggregation are mainly represented by several posttranslational modifications that alter its structure and conformational state. Hence, abnormal phosphorylation and truncation of tau protein have gained attention as key mechanisms that become tau protein in a pathological entity. Evidences about the clinicopathological significance of phosphorylated and truncated tau have been documented during the progression of AD as well as their capacity to exert cytotoxicity when expressed in cell and animal models. This paper describes the normal structure and function of tau protein and its major alterations during its pathological aggregation in AD.

          Related collections

          Most cited references159

          • Record: found
          • Abstract: found
          • Article: not found

          Neurofibrillary tangles but not senile plaques parallel duration and severity of Alzheimer's disease.

          We studied the accumulation of neurofibrillary tangles (NFTs) and senile plaques (SPs) in 10 Alzheimer's disease patients who had been examined during life. We counted NFTs and SPs in 13 cytoarchitectural regions representing limbic, primary sensory, and association cortices, and in subcortical neurotransmitter-specific areas. The degree of neuropathologic change was compared with the severity of dementia, as assessed by the Blessed Dementia Scale and duration of illness. We found that (1) the severity of dementia was positively related to the number of NFTs in neocortex, but not to the degree of SP deposition; (2) NFTs accumulate in a consistent pattern reflecting hierarchic vulnerability of individual cytoarchitectural fields; (3) NFTs appeared in the entorhinal cortex, CA1/subiculum field of the hippocampal formation, and the amygdala early in the disease process; and (4) the degree of SP deposition was also related to a hierarchic vulnerability of certain brain areas to accumulate SPs, but the pattern of SP distribution was different from that of NFT.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Sirtuins in mammals: insights into their biological function.

            Sirtuins are a conserved family of proteins found in all domains of life. The first known sirtuin, Sir2 (silent information regulator 2) of Saccharomyces cerevisiae, from which the family derives its name, regulates ribosomal DNA recombination, gene silencing, DNA repair, chromosomal stability and longevity. Sir2 homologues also modulate lifespan in worms and flies, and may underlie the beneficial effects of caloric restriction, the only regimen that slows aging and extends lifespan of most classes of organism, including mammals. Sirtuins have gained considerable attention for their impact on mammalian physiology, since they may provide novel targets for treating diseases associated with aging and perhaps extend human lifespan. In this review we describe our current understanding of the biological function of the seven mammalian sirtuins, SIRT1-7, and we will also discuss their potential as mediators of caloric restriction and as pharmacological targets to delay and treat human age-related diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction.

              Sir2 is an NAD-dependent deacetylase that connects metabolism with longevity in yeast, worms and flies. Mammals contain seven homologs of yeast Sir2, SIRT1-7. Here, we review recent findings demonstrating the role of these mammalian sirtuins as regulators of physiology, calorie restriction, and aging. The current findings sharpen our understanding of sirtuins as potential pharmacological targets to treat the major diseases of aging.
                Bookmark

                Author and article information

                Journal
                Int J Alzheimers Dis
                Int J Alzheimers Dis
                IJAD
                International Journal of Alzheimer's Disease
                Hindawi Publishing Corporation
                2090-8024
                2090-0252
                2012
                29 May 2012
                : 2012
                : 731526
                Affiliations
                1Laboratory of Biochemistry and Brain Pathophysiology and AD Center, Prague Psychiatric Center, Ústavní 91, 181 03 Prague 8, Czech Republic
                2Third Faculty of Medicine, Charles University in Prague, Ruská 87, 100 00 Prague 10, Czech Republic
                3Department of Cell Biology, Center of Research and Advanced Studies, National Polytechnic Institute, Avenue Instituto Politecnico Nacional 2508, 07360 Mexico City, DF, Mexico
                4Department of Neurology, Third Faculty of Medicine, Faculty Hospital Královské Vinohrady, Charles University in Prague, Šrobárova 50, 100 34 Prague 10, Czech Republic
                Author notes

                Academic Editor: David Blum

                Article
                10.1155/2012/731526
                3368361
                22690349
                d36a671b-30c5-4dfe-8d50-9ea0c0fabdbe
                Copyright © 2012 Michala Kolarova et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 19 January 2012
                : 28 March 2012
                : 29 March 2012
                Categories
                Review Article

                Neurology
                Neurology

                Comments

                Comment on this article