6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Pseudomonas aeruginosa outer membrane vesicles modulate host immune responses by targeting the Toll-like receptor 4 signaling pathway.

      Infection and Immunity
      Animals, Bacterial Outer Membrane Proteins, immunology, Cell Line, Cytoplasmic Vesicles, Epithelial Cells, Humans, Immunization, Inflammation, Interleukin-1beta, metabolism, Interleukin-6, Lipid A, analogs & derivatives, pharmacology, Lipopolysaccharides, Lung, microbiology, Mice, Mice, Inbred C57BL, Pseudomonas Infections, Pseudomonas Vaccines, Pseudomonas aeruginosa, Pulmonary Alveoli, Respiratory Mucosa, Signal Transduction, Toll-Like Receptor 4, antagonists & inhibitors, Vaccination

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bacteria can naturally secrete outer membrane vesicles (OMVs) as pathogenic factors, while these vesicles may also serve as immunologic regulators if appropriately prepared. However, it is largely unknown whether Pseudomonas aeruginosa OMVs can activate inflammatory responses and whether immunization with OMVs can provide immune protection against subsequent infection. We purified and identified OMVs, which were then used to infect lung epithelial cells in vitro as well as C57BL/6J mice to investigate the immune response and the underlying signaling pathway. The results showed that OMVs generated from P. aeruginosa wild-type strain PAO1 were more cytotoxic to alveolar epithelial cells than those from quorum-sensing (QS)-deficient strain PAO1-ΔlasR. The levels of Toll-like receptor 4 (TLR4) and proinflammatory cytokines, including interleukin-1β (IL-1β) and IL-6, increased following OMV infection. Compared with lipopolysaccharide (LPS), lysed OMVs in which the membrane structures were broken induced a weak immune response. Furthermore, expression levels of TLR4-mediated responders (i.e., cytokines) were markedly downregulated by the TLR4 inhibitor E5564. Active immunization with OMVs or passive transfer of sera with a high cytokine quantity acquired from OMV-immunized mice could protect healthy mice against subsequent lethal PAO1 challenges (1.5 × 10(11) CFU). Collectively, these findings indicate that naturally secreted P. aeruginosa OMVs may trigger significant inflammatory responses via the TLR4 signaling pathway and protect mice against pseudomonal lung infection.

          Related collections

          Author and article information

          Comments

          Comment on this article