30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rosiglitazone Exerts an Anti-depressive Effect in Unpredictable Chronic Mild-Stress-Induced Depressive Mice by Maintaining Essential Neuron Autophagy and Inhibiting Excessive Astrocytic Apoptosis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is increasing interest in the association between depression and the development of metabolic diseases. Rosiglitazone, a therapeutic drug used to treat type 2 diabetes mellitus, has shown neuroprotective effects in patients with stroke and Alzheimer’s disease. The present study was performed to evaluate the possible roles of rosiglitazone in in vivo (unpredictable chronic mild stress-induced depressive mouse model) and in vitro (corticosterone-induced cellular model) depressive models. The results showed that rosiglitazone reversed depressive behaviors in mice, as indicated by the forced swimming test and open field test. Rosiglitazone was also found to inhibit the inflammatory response, decrease corticosterone levels, and promote astrocyte proliferation and neuronal axon plasticity in the prefrontal cortex of mice. This series of in vivo and in vitro experiments showed that autophagy among neurons was inhibited in depressive models and that rosiglitazone promoted autophagy by upregulating LKB1, which exerted neuroprotective effects. Rosiglitazone was also found to activate the Akt/CREB pathway by increasing IGF-1R expression and IGF-1 protein levels, thereby playing an anti-apoptotic role in astrocytes. Rosiglitazone’s autophagy promotion and neuroprotective effects were found to be reversed by the PPARγ antagonist T0070907 in primary neurons and by PPARγ knockdown in an N2a cell line. In conclusion, we found that rosiglitazone protects both neurons and astrocytes in in vivo and in vitro depressive models, thereby playing an anti-depressive role. These findings suggest that PPARγ could be a new target in the development of anti-depressive drugs.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants.

          Depression is a common, devastating illness. Current pharmacotherapies help many patients, but high rates of a partial response or no response, and the delayed onset of the effects of antidepressant therapies, leave many patients inadequately treated. However, new insights into the neurobiology of stress and human mood disorders have shed light on mechanisms underlying the vulnerability of individuals to depression and have pointed to novel antidepressants. Environmental events and other risk factors contribute to depression through converging molecular and cellular mechanisms that disrupt neuronal function and morphology, resulting in dysfunction of the circuitry that is essential for mood regulation and cognitive function. Although current antidepressants, such as serotonin-reuptake inhibitors, produce subtle changes that take effect in weeks or months, it has recently been shown that treatment with new agents results in an improvement in mood ratings within hours of dosing patients who are resistant to typical antidepressants. Within a similar time scale, these new agents have also been shown to reverse the synaptic deficits caused by stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adult hippocampal neurogenesis buffers stress responses and depressive behavior

            Summary Glucocorticoids are released in response to stressful experiences and serve many beneficial homeostatic functions. However, dysregulation of glucocorticoids is associated with cognitive impairments and depressive illness 1, 2 . In the hippocampus, a brain region densely populated with receptors for stress hormones, stress and glucocorticoids strongly inhibit adult neurogenesis 3 . Decreased neurogenesis has been implicated in the pathogenesis of anxiety and depression, but direct evidence for this role is lacking 4, 5 . Here we show that adult-born hippocampal neurons are required for normal expression of the endocrine and behavioral components of the stress response. Using transgenic and radiation methods to specifically inhibit adult neurogenesis, we find that glucocorticoid levels are slower to recover after moderate stress and are less suppressed by dexamethasone in neurogenesis-deficient mice compared with intact mice, consistent with a role for the hippocampus in regulation of the hypothalamic-pituitary-adrenal (HPA) axis 6, 7 . Relative to controls, neurogenesis-deficient mice showed increased food avoidance in a novel environment after acute stress, increased behavioral despair in the forced swim test, and decreased sucrose preference, a measure of anhedonia. These findings identify a small subset of neurons within the dentate gyrus that are critical for hippocampal negative control of the HPA axis and support a direct role for adult neurogenesis in depressive illness.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Thiazolidinediones

                Bookmark

                Author and article information

                Contributors
                Journal
                Front Mol Neurosci
                Front Mol Neurosci
                Front. Mol. Neurosci.
                Frontiers in Molecular Neuroscience
                Frontiers Media S.A.
                1662-5099
                14 September 2017
                2017
                : 10
                : 293
                Affiliations
                [1] 1Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University Nanjing, China
                [2] 2Neuroprotective Drug Discovery Key Laboratory, Department of Forensic Medicine, Nanjing Medical University Nanjing, China
                Author notes

                Edited by: Ildikó Rácz, University Hospital Bonn, Germany

                Reviewed by: Wei Chen, Beijing Institute of Pharmacology and Toxicology, China; Xiaolu Zhang, Northern Jiangsu People’s Hospital, China

                *Correspondence: Xiu-Lan Sun, xiulans@ 123456njmu.edu.cn
                Article
                10.3389/fnmol.2017.00293
                5603714
                28959186
                d3722e50-dd60-4632-8f2b-79a2c6f183c1
                Copyright © 2017 Zhao, Zhang, Guo, Cao, Xue, Zhao, Yang, Yang, Ji, Huang and Sun.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 23 June 2017
                : 31 August 2017
                Page count
                Figures: 8, Tables: 2, Equations: 1, References: 56, Pages: 16, Words: 0
                Funding
                Funded by: National Natural Science Foundation of China 10.13039/501100001809
                Award ID: 81473197
                Award ID: 81273495
                Categories
                Neuroscience
                Original Research

                Neurosciences
                pparγ,rosiglitazone,depression,neuron,astrocyte,autophagy,apoptosis
                Neurosciences
                pparγ, rosiglitazone, depression, neuron, astrocyte, autophagy, apoptosis

                Comments

                Comment on this article