0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      From phenotypes to black holes… and back

      letter

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Dear Editor, We thank Rajendram et al. [1], who—with an amusing use of a pun—point out a “hole” in our Editorial. This physical and metaphorical hole is clearly the presence of a patent foramen ovale (PFO) as an additional mechanism in the hypoxaemia observed in COVID-19. Although PFO is frequently found in the general population [2], we have not documented any cases in which PFO significant enough to (even partly) explain the hypoxaemia. All our patients undergo echocardiography to exclude structural or functional heart abnormalities that may explain or contribute to respiratory failure (e.g. severe mitral regurgitation or, indeed intracardiac shunt). It is clear that if such an abnormality was to be found—the whole idea of phenotypes is no longer relevant is the hypoxaemia may be explained by intracardiac shunt regardless of presence or absence of COVID-19 [2]. This argument is also valid for any ventilated patient. Therefore, we do not share the enthusiasm of Rajendram et al. [1], to further sub-classify phenotypes. We intended to present a conceptual framework that can aid the selection of the ventilatory strategy, while avoiding the use of multiple and confusing acronyms. We however fully agree with Rajendram et al. that echocardiography is an essential tool for the diagnosis and management of all ventilated patients whether with classical or ‘atypical’ ARDS. We read with interest the letter by Jain et al. [3], who summarise some of the understanding of the ACE-2-mediated dysregulation of pulmonary perfusion in COVD-19, and delineate an ‘epithelial-endothelial cross-talk’ as a possible mechanism for hypoxaemia. The mechanism they propose is certainly plausible and consistent with the biology of ACE-2 receptors [4, 5] and with some phases of the history of the disease. However, despite the undeniable temptation to provide a unified mechanism to explain the dysregulated ventilation/perfusion relationship in COVID-19, the interaction between the heterogenous distribution of the disease, the variable amount of pulmonary oedema, the ventilation strategy received and the duration of symptoms, make the search for a single explanatory mechanism simplistic. In addition, inflammation and thrombosis [6] can lead to occlusion of the vasculature that will increase dead space and contribute to the increase in minute ventilation and work of breathing. We disagree, however with Jain et al. when they state that P-SILI is an unlikely mechanism of the worsening of the respiratory function in COVID-19. Indeed, in many institutions the use (sometimes prolonged) of non-invasive support (NIV or CPAP) is a frequent strategy for managing COVID-19 pneumonitis [7, 8]. It is clear that NIV or CPAP will not lead to P-SILI in all instances. If the support is able to reduce the respiratory effort (trans-pulmonary pressure), and the of the disease follows a more benign course the hypoxaemia will resolve. However, uncontrolled work of breathing can lead to additional oedema and lung injury and can explain some of the results found in the literature that describes the outcomes of patients with hypoxemic respiratory failure who undergo initial treatment with non-invasive strategies [9–11]. These results may be applicable to COVID-19. We would like once again to stress the difference between having a conceptual pathophysiological framework versus having an explanatory biological model. Our intention was to suggest the former while recognising the difficulties in describing the latter [12, 13]. The model we describe, whilst based on physiological considerations, has a high degree of pragmatism to suit front-line management and triage decisions in the many patients who have fallen victim of COVID-19 pneumonitis.

          Related collections

          Most cited references10

          • Record: found
          • Abstract: found
          • Article: not found

          Incidence of thrombotic complications in critically ill ICU patients with COVID-19

          Introduction COVID-19 may predispose to both venous and arterial thromboembolism due to excessive inflammation, hypoxia, immobilisation and diffuse intravascular coagulation. Reports on the incidence of thrombotic complications are however not available. Methods We evaluated the incidence of the composite outcome of symptomatic acute pulmonary embolism (PE), deep-vein thrombosis, ischemic stroke, myocardial infarction or systemic arterial embolism in all COVID-19 patients admitted to the ICU of 2 Dutch university hospitals and 1 Dutch teaching hospital. Results We studied 184 ICU patients with proven COVID-19 pneumonia of whom 23 died (13%), 22 were discharged alive (12%) and 139 (76%) were still on the ICU on April 5th 2020. All patients received at least standard doses thromboprophylaxis. The cumulative incidence of the composite outcome was 31% (95%CI 20-41), of which CTPA and/or ultrasonography confirmed VTE in 27% (95%CI 17-37%) and arterial thrombotic events in 3.7% (95%CI 0-8.2%). PE was the most frequent thrombotic complication (n = 25, 81%). Age (adjusted hazard ratio (aHR) 1.05/per year, 95%CI 1.004-1.01) and coagulopathy, defined as spontaneous prolongation of the prothrombin time > 3 s or activated partial thromboplastin time > 5 s (aHR 4.1, 95%CI 1.9-9.1), were independent predictors of thrombotic complications. Conclusion The 31% incidence of thrombotic complications in ICU patients with COVID-19 infections is remarkably high. Our findings reinforce the recommendation to strictly apply pharmacological thrombosis prophylaxis in all COVID-19 patients admitted to the ICU, and are strongly suggestive of increasing the prophylaxis towards high-prophylactic doses, even in the absence of randomized evidence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            COVID-19 pneumonia: different respiratory treatments for different phenotypes?

            The Surviving Sepsis Campaign panel recently recommended that “mechanically ventilated patients with COVID-19 should be managed similarly to other patients with acute respiratory failure in the ICU [1].” Yet, COVID-19 pneumonia [2], despite falling in most of the circumstances under the Berlin definition of ARDS [3], is a specific disease, whose distinctive features are severe hypoxemia often associated with near normal respiratory system compliance (more than 50% of the 150 patients measured by the authors and further confirmed by several colleagues in Northern Italy). This remarkable combination is almost never seen in severe ARDS. These severely hypoxemic patients despite sharing a single etiology (SARS-CoV-2) may present quite differently from one another: normally breathing (“silent” hypoxemia) or remarkably dyspneic; quite responsive to nitric oxide or not; deeply hypocapnic or normo/hypercapnic; and either responsive to prone position or not. Therefore, the same disease actually presents itself with impressive non-uniformity. Based on detailed observation of several cases and discussions with colleagues treating these patients, we hypothesize that the different COVID-19 patterns found at presentation in the emergency department depend on the interaction between three factors: (1) the severity of the infection, the host response, physiological reserve and comorbidities; (2) the ventilatory responsiveness of the patient to hypoxemia; (3) the time elapsed between the onset of the disease and the observation in the hospital. The interaction between these factors leads to the development of a time-related disease spectrum within two primary “phenotypes”: Type L, characterized by Low elastance (i.e., high compliance), Low ventilation-to-perfusion ratio, Low lung weight and Low recruitability and Type H, characterized by High elastance, High right-to-left shunt, High lung weight and High recruitability. COVID-19 pneumonia, Type L At the beginning, COVID-19 pneumonia presents with the following characteristics: Low elastance. The nearly normal compliance indicates that the amount of gas in the lung is nearly normal [4]. Low ventilation-to-perfusion (VA/Q) ratio. Since the gas volume is nearly normal, hypoxemia may be best explained by the loss of regulation of perfusion and by loss of hypoxic vasoconstriction. Accordingly, at this stage, the pulmonary artery pressure should be near normal. Low lung weight. Only ground-glass densities are present on CT scan, primarily located subpleurally and along the lung fissures. Consequently, lung weight is only moderately increased. Low lung recruitability. The amount of non-aerated tissue is very low; consequently, the recruitability is low [5]. To conceptualize these phenomena, we hypothesize the following sequence of events: the viral infection leads to a modest local subpleural interstitial edema (ground-glass lesions) particularly located at the interfaces between lung structures with different elastic properties, where stress and strain are concentrated [6]. Vasoplegia accounts for severe hypoxemia. The normal response to hypoxemia is to increase minute ventilation, primarily by increasing the tidal volume [7] (up to 15–20 ml/kg), which is associated with a more negative intrathoracic inspiratory pressure. Undetermined factors other than hypoxemia markedly stimulate, in these patients, the respiratory drive. The near normal compliance, however, explains why some of the patients present without dyspnea as the patient inhales the volume he expects. This increase in minute ventilation leads to a decrease in PaCO2. The evolution of the disease: transitioning between phenotypes The Type L patients may remain unchanging for a period and then improve or worsen. The possible key feature which determines the evolution of the disease, other than the severity of the disease itself, is the depth of the negative intrathoracic pressure associated with the increased tidal volume in spontaneous breathing. Indeed, the combination of a negative inspiratory intrathoracic pressure and increased lung permeability due to inflammation results in interstitial lung edema. This phenomenon, initially described by Barach in [8] and Mascheroni in [9] both in an experimental setting, has been recently recognized as the leading cause of patient self-inflicted lung injury (P-SILI) [10]. Over time, the increased edema increases lung weight, superimposed pressure and dependent atelectasis. When lung edema reaches a certain magnitude, the gas volume in the lung decreases, and the tidal volumes generated for a given inspiratory pressure decrease [11]. At this stage, dyspnea develops, which in turn leads to worsening P-SILI. The transition from Type L to Type H may be due to the evolution of the COVID-19 pneumonia on one hand and the injury attributable to high-stress ventilation on the other. COVID-19 pneumonia, Type H The Type H patient: High elastance. The decrease in gas volume due to increased edema accounts for the increased lung elastance. High right-to-left shunt. This is due to the fraction of cardiac output perfusing the non-aerated tissue which develops in the dependent lung regions due to the increased edema and superimposed pressure. High lung weight. Quantitative analysis of the CT scan shows a remarkable increase in lung weight (> 1.5 kg), on the order of magnitude of severe ARDS [12]. High lung recruitability. The increased amount of non-aerated tissue is associated, as in severe ARDS, with increased recruitability [5]. The Type H pattern, 20–30% of patients in our series, fully fits the severe ARDS criteria: hypoxemia, bilateral infiltrates, decreased the respiratory system compliance, increased lung weight and potential for recruitment. Figure 1 summarizes the time course we described. In panel a, we show the CT in spontaneous breathing of a Type L patient at admission, and in panel b, its transition in Type H after 7 days of noninvasive support. As shown, a similar degree of hypoxemia was associated with different patterns in lung imaging. Fig. 1 a CT scan acquired during spontaneous breathing. The cumulative distribution of the CT number is shifted to the left (well-aerated compartments), being the 0 to − 100 HU compartment, the non-aerated tissue virtually 0. Indeed, the total lung tissue weight was 1108 g, 7.8% of which was not aerated and the gas volume was 4228 ml. Patient receiving oxygen with venturi mask inspired oxygen fraction of 0.8. b CT acquired during mechanical ventilation at end-expiratory pressure at 5 cmH2O of PEEP. The cumulative distribution of the CT scan is shifted to the right (non-aerated compartments), while the left compartments are greatly reduced. Indeed, the total lung tissue weight was 2744 g, 54% of which was not aerated and the gas volume was 1360 ml. The patient was ventilated in volume controlled mode, 7.8 ml/kg of tidal volume, respiratory rate of 20 breaths per minute, inspired oxygen fraction of 0.7 Respiratory treatment Given this conceptual model, it follows that the respiratory treatment offered to Type L and Type H patients must be different. The proposed treatment is consistent with what observed in COVID-19, even though the overwhelming number of patients seen in this pandemic may limit its wide applicability. The first step to reverse hypoxemia is through an increase in FiO2 to which the Type L patient responds well, particularly if not yet breathless. In Type L patients with dyspnea, several noninvasive options are available: high-flow nasal cannula (HFNC), continuous positive airway pressure (CPAP) or noninvasive ventilation (NIV). At this stage, the measurement (or the estimation) of the inspiratory esophageal pressure swings is crucial [13]. In the absence of the esophageal manometry, surrogate measures of work of breathing, such as the swings of central venous pressure [14] or clinical detection of excessive inspiratory effort, should be assessed. In intubated patients, the P0.1 and P occlusion should also be determined. High PEEP, in some patients, may decrease the pleural pressure swings and stop the vicious cycle that exacerbates lung injury. However, high PEEP in patients with normal compliance may have detrimental effects on hemodynamics. In any case, noninvasive options are questionable, as they may be associated with high failure rates and delayed intubation, in a disease which typically lasts several weeks. The magnitude of inspiratory pleural pressures swings may determine the transition from the Type L to the Type H phenotype. As esophageal pressure swings increase from 5 to 10 cmH2O—which are generally well tolerated—to above 15 cmH2O, the risk of lung injury increases and therefore intubation should be performed as soon as possible. Once intubated and deeply sedated, the Type L patients, if hypercapnic, can be ventilated with volumes greater than 6 ml/kg (up to 8–9 ml/kg), as the high compliance results in tolerable strain without the risk of VILI. Prone positioning should be used only as a rescue maneuver, as the lung conditions are “too good” for the prone position effectiveness, which is based on improved stress and strain redistribution. The PEEP should be reduced to 8–10 cmH2O, given that the recruitability is low and the risk of hemodynamic failure increases at higher levels. An early intubation may avert the transition to Type H phenotype. Type H patients should be treated as severe ARDS, including higher PEEP, if compatible with hemodynamics, prone positioning and extracorporeal support. In conclusion, Type L and Type H patients are best identified by CT scan and are affected by different pathophysiological mechanisms. If not available, signs which are implicit in Type L and Type H definition could be used as surrogates: respiratory system elastance and recruitability. Understanding the correct pathophysiology is crucial to establishing the basis for appropriate treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations

              Summary As coronavirus disease 2019 (COVID-19) spreads across the world, the intensive care unit (ICU) community must prepare for the challenges associated with this pandemic. Streamlining of workflows for rapid diagnosis and isolation, clinical management, and infection prevention will matter not only to patients with COVID-19, but also to health-care workers and other patients who are at risk from nosocomial transmission. Management of acute respiratory failure and haemodynamics is key. ICU practitioners, hospital administrators, governments, and policy makers must prepare for a substantial increase in critical care bed capacity, with a focus not just on infrastructure and supplies, but also on staff management. Critical care triage to allow the rationing of scarce ICU resources might be needed. Researchers must address unanswered questions, including the role of repurposed and experimental therapies. Collaboration at the local, regional, national, and international level offers the best chance of survival for the critically ill.
                Bookmark

                Author and article information

                Contributors
                gattinoniluciano@gmail.com
                Journal
                Intensive Care Med
                Intensive Care Med
                Intensive Care Medicine
                Springer Berlin Heidelberg (Berlin/Heidelberg )
                0342-4642
                1432-1238
                5 June 2020
                5 June 2020
                : 1-2
                Affiliations
                [1 ]GRID grid.420545.2, Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, , Health Centre for Human and Applied Physiological Sciences, ; London, UK
                [2 ]GRID grid.4708.b, ISNI 0000 0004 1757 2822, Department of Anesthesia and Intensive Care, San Paolo Hospital, , University of Milan, ; Milan, Italy
                [3 ]GRID grid.7450.6, ISNI 0000 0001 2364 4210, Department of Anesthesiology and Intensive Care, , Medical University of Göttingen, ; Robert-Koch Straße 40, 37075 Göttingen, Germany
                Author information
                http://orcid.org/0000-0001-5380-2494
                Article
                6124
                10.1007/s00134-020-06124-0
                7272587
                d39298be-4df9-4833-9b14-e5a687cdf4be
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, which permits any non-commercial use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc/4.0/.

                History
                : 18 May 2020
                Categories
                Letter

                Emergency medicine & Trauma
                Emergency medicine & Trauma

                Comments

                Comment on this article

                scite_