18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Co-cultured tissue-specific scaffolds for tendon/bone interface engineering

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The tendon/ligament-to-bone interface has a complex organization to enable transfer of forces through the tendon/ligament to the bone. The purpose of this study is to create a co-culture environment enabling a tissue-specific tendon region and tissue-specific bone region on a degradable scaffold, using NIH 3T3 fibroblast–deposited extracellular matrix and MC 3T3 osteoblast–deposited extracellular matrix, respectively. Before full characterization of the deposited extracellular matrix coating can be analyzed, co-culture parameters including culture medium and seeding technique should be addressed. An appropriate medium formulation was developed to reduce fibroblast to osteoblast mineralization by adjusting beta-glycerophosphate concentrations. Standard growth medium with fetal bovine serum + 3 mM beta-glycerophosphate + 25 µg/mL ascorbic acid was found to be the most suitable formulation evaluated in these study conditions. Seeding and cell migration studies of co-cultured fibroblast- and osteoblast-specific scaffolds were performed to identify whether tissue regions could be created on the scaffold. Fibroblast and osteoblast regions were successfully seeded and little to no cell migration was observed up to 42 h after seeding. Finally, a preliminary analysis of basic extracellular matrix components was measured in the fibroblast, osteoblast, and transition regions. Tissue-specific DNA, glycosaminoglycan, and collagen were found in uniform amounts on the scaffolds and were not different significantly between scaffold regions. In conclusion, initial steps to create tissue-specific fibroblast and osteoblast regions on a degradable scaffold were successful in preparation for further characterization investigations as a tendon-to-bone interface scaffold.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Biomimetic materials for tissue engineering.

          Peter Ma (2008)
          Tissue engineering and regenerative medicine is an exciting research area that aims at regenerative alternatives to harvested tissues for transplantation. Biomaterials play a pivotal role as scaffolds to provide three-dimensional templates and synthetic extracellular matrix environments for tissue regeneration. It is often beneficial for the scaffolds to mimic certain advantageous characteristics of the natural extracellular matrix, or developmental or wound healing programs. This article reviews current biomimetic materials approaches in tissue engineering. These include synthesis to achieve certain compositions or properties similar to those of the extracellular matrix, novel processing technologies to achieve structural features mimicking the extracellular matrix on various levels, approaches to emulate cell-extracellular matrix interactions, and biologic delivery strategies to recapitulate a signaling cascade or developmental/wound healing program. The article also provides examples of enhanced cellular/tissue functions and regenerative outcomes, demonstrating the excitement and significance of the biomimetic materials for tissue engineering and regeneration.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A simplified method for the analysis of hydroxyproline in biological tissues.

            A critical study of the different steps involved in previous procedure for hydroxyproline assay allows the direct measurement of collagen content in tissue' homogenates without losing the advantages of the method. The procedure is based on alkaline hydrolysis of the tissue homogenate and subsequent determination of the free hydroxyproline in hydrolyzates. Chloramine-T was used to oxidize the free hydroxyproline for the production of a pyrrole. The addition of Ehrlich's reagent resulted in the formation of a chromophore that can be measured at 550 nm. Optimal assay conditions were determined using tissue homogenate and purified acid soluble collagen along with standard hydroxyproline. Critical parameters such as the amount of chloramine-T, sodium hydroxide, p-dimethylaminobenzaldehyde, pH of the reaction buffer, and length of oxidation time were examined to obtain satisfactory results. The method has been applied to samples of tissue homogenate and purified acid soluble collagen, with recovery of added hydroxyproline of 101 +/- 6.5 and 104 +/- 6.0 (SD) percent, respectively. The method is highly sensitive and reproducible when used to measure the imino acid in tissue homogenates. The modified hydroxyproline assay presented in this communication will be useful for routine measurement of collagen content in extracts of various tissue specimens. In addition, the modified method can be used for batch processing of column fractions to monitor the collagen concentrations during purification.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Isolation and characterization of MC3T3-E1 preosteoblast subclones with distinct in vitro and in vivo differentiation/mineralization potential.

              A series of subclonal cell lines with high or low differentiation/mineralization potential after growth in the presence of ascorbic acid (AA) were derived from murine MC3T3-E1 cells. Subclones were characterized in terms of their ability to mineralize a collagenous extracellular matrix both in vitro and in vivo and express osteoblast-related genes. When compared with nonmineralizing cells, mineralizing subclones selectively expressed mRNAs for the osteoblast markers, bone sialoprotein (BSP), osteocalcin (OCN), and the parathyroid hormone (PTH)/parathyroid hormone-related protein (PTHrP) receptor. In contrast, alkaline phosphatase mRNA was present in certain nonmineralizing as well as mineralizing subclones, suggesting that its expression may be subject to different controls from other osteoblast markers. Only highly differentiating subclones exhibited strong AA-dependent induction of a transiently transfected OCN promoter-luciferase reporter gene, indicating that there was a good correlation between mRNA levels and transcriptional activity. Consistent with its postulated role in biomineralization, BSP as measured by Western blotting was only present in mineralizing subclones. After implantation into immunodeficient mice, highly differentiating subclones formed bone-like ossicles resembling woven bone, while poorly differentiating cells only produced fibrous tissue. Interestingly, subclones with both high and low differentiation potential produced similar amounts of collagen in culture and expressed comparable basal levels of mRNA encoding Osf2/Cbfa1, an osteoblast-related transcription factor. Although some strongly differentiating cells exhibited a modest AA-dependent up-regulation of Osf2/Cbfa1 mRNA, there was no clear relationship between levels of this message and induction of mRNAs for other differentiation markers. Thus, the mere presence of Osf2/Cbfa1 in a subclone was not sufficient for osteoblast differentiation. These subclones will be very useful for studying critical events in osteoblast differentiation and mineralization.
                Bookmark

                Author and article information

                Journal
                J Tissue Eng
                J Tissue Eng
                TEJ
                sptej
                Journal of Tissue Engineering
                SAGE Publications (Sage UK: London, England )
                2041-7314
                7 July 2014
                2014
                : 5
                : 2041731414542294
                Affiliations
                [1 ]Department of Biomedical Engineering, The University of Memphis, Memphis, TN, USA
                [2 ]Department of Biological Sciences, The University of Memphis, Memphis, TN, USA
                [3 ]Department of Orthopaedic Surgery, The University of Tennessee Health Science Center, Memphis, TN, USA
                Author notes
                [*]Jared O Cooper, Biomet, Inc., 56 East Bell Drive, Warsaw, IN 46581, USA. Email: jared.cooper@ 123456biomet.com
                Article
                10.1177_2041731414542294
                10.1177/2041731414542294
                4221948
                d399ebe3-e53c-49dd-a081-ddb6424baf9e
                © The Author(s) 2014

                This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 3.0 License ( http://www.creativecommons.org/licenses/by-nc/3.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page ( http://www.uk.sagepub.com/aboutus/openaccess.htm).

                History
                : 16 January 2014
                : 5 June 2014
                Categories
                Article
                Custom metadata
                corrected-proof
                January - December 2014

                Biomedical engineering
                tendon,ligaments,bone,tissue engineering,enthesis,scaffold,interface,biomaterial,soft tissue

                Comments

                Comment on this article