53
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Echocardiography in patients with hypertrophic cardiomyopathy: usefulness of old and new techniques in the diagnosis and pathophysiological assessment

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Hypertrophic cardiomyopathy (HCM) is one of the most common inherited cardiomyopathy. The identification of patients with HCM is sometimes still a challenge. Moreover, the pathophysiology of the disease is complex because of left ventricular hyper-contractile state, diastolic dysfunction, ischemia and obstruction which can be coexistent in the same patient. In this review, we discuss the current and emerging echocardiographic methodology that can help physicians in the correct diagnostic and pathophysiological assessment of patients with HCM.

          Related collections

          Most cited references54

          • Record: found
          • Abstract: found
          • Article: not found

          Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy.

          Microvascular dysfunction, reflected by an inadequate increase in myocardial blood flow in response to dipyridamole infusion, is a recognized feature of hypertrophic cardiomyopathy. Its long-term effect on the prognosis is unknown. We prospectively evaluated a cohort of patients with hypertrophic cardiomyopathy after they had undergone quantitative assessment of myocardial blood flow by positron-emission tomography (PET). Fifty-one patients (New York Heart Association class I or II) were followed for a mean (+/-SD) of 8.1+/-2.1 years after PET. Twelve subjects with atypical chest pain served as controls. Measurement of flow was performed at base line and after the infusion of the coronary vasodilator dipyridamole, with the use of nitrogen-13-labeled ammonia. Patients were then divided into three equal groups with increasing values of myocardial blood flow. The response of myocardial blood flow to dipyridamole was severely blunted in the patients, as compared with the controls (1.50+/-0.69 vs. 2.71+/-0.94 ml per minute per gram of tissue, P<0.001). Sixteen patients (31 percent) had an unfavorable outcome (death from cardiovascular causes, progression to New York Heart Association class III or IV, or sustained ventricular arrhythmias requiring the implantation of a cardioverter-defibrillator) 2.2 to 9.1 years after PET. Reduced blood flow in response to dipyridamole was strongly associated with an unfavorable outcome. Multivariate analysis showed that among patients in the lowest of the three flow groups the age-adjusted relative hazard of death from cardiovascular causes was 9.6 (P=0.02) and the relative hazard of an unfavorable outcome (a combined end point) was 20.1 (P=0.003), as compared with patients in the two other flow groups. Specifically, all four patients who died from heart failure and three of five who died suddenly were in this subgroup. In patients with hypertrophic cardiomyopathy, the degree of microvascular dysfunction is a strong, independent predictor of clinical deterioration and death. Severe microvascular dysfunction is often present in patients with mild or no symptoms and may precede clinical deterioration by years. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes.

            In some highly trained athletes, the thickness of the left ventricular wall may increase as a consequence of exercise training and resemble that found in cardiac diseases associated with left ventricular hypertrophy, such as hypertrophic cardiomyopathy. In these athletes, the differential diagnosis between physiologic and pathologic hypertrophy may be difficult. To address this issue, we measured left ventricular dimensions with echocardiography in 947 elite, highly trained athletes who participated in a wide variety of sports. The thickest left ventricular wall among the athletes measured 16 mm. Wall thicknesses within a range compatible with the diagnosis of hypertrophic cardiomyopathy (greater than or equal to 13 mm) were identified in only 16 of the 947 athletes (1.7 percent); 15 were rowers or canoeists, and 1 was a cyclist. Therefore, the wall was greater than or equal to 13 mm thick in 7 percent of 219 rowers, canoeists, and cyclists but in none of 728 participants in 22 other sports. All athletes with walls greater than or equal to 13 mm thick also had enlarged left ventricular end-diastolic cavities (dimensions, 55 to 63 mm). On the basis of these data, a left-ventricular-wall thickness of greater than or equal to 13 mm is very uncommon in highly trained athletes, virtually confined to athletes training in rowing sports, and associated with an enlarged left ventricular cavity. In addition, the upper limit to which the thickness of the left ventricular wall may be increased by athletic training appears to be 16 mm. Therefore, athletes with a wall thickness of more than 16 mm and a nondilated left ventricular cavity are likely to have primary forms of pathologic hypertrophy, such as hypertrophic cardiomyopathy.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Glycogen storage diseases presenting as hypertrophic cardiomyopathy.

              Unexplained left ventricular hypertrophy often prompts the diagnosis of hypertrophic cardiomyopathy, a sarcomere-protein gene disorder. Because mutations in the gene for AMP-activated protein kinase gamma2 (PRKAG2) cause an accumulation of cardiac glycogen and left ventricular hypertrophy that mimics hypertrophic cardiomyopathy, we hypothesized that hypertrophic cardiomyopathy might also be clinically misdiagnosed in patients with other mutations in genes regulating glycogen metabolism. Genetic analyses performed in 75 consecutive unrelated patients with hypertrophic cardiomyopathy detected 40 sarcomere-protein mutations. In the remaining 35 patients, PRKAG2, lysosome-associated membrane protein 2 (LAMP2), alpha-galactosidase (GLA), and acid alpha-1,4-glucosidase (GAA) genes were studied. Gene defects causing Fabry's disease (GLA) and Pompe's disease (GAA) were not found, but two LAMP2 and one PRKAG2 mutations were identified in probands with prominent hypertrophy and electrophysiological abnormalities. These results prompted the study of two additional, independent series of patients. Genetic analyses of 20 subjects with massive hypertrophy (left ventricular wall thickness, > or =30 mm) but without electrophysiological abnormalities revealed mutations in neither LAMP2 nor PRKAG2. Genetic analyses of 24 subjects with increased left ventricular wall thickness and electrocardiograms suggesting ventricular preexcitation revealed four LAMP2 and seven PRKAG2 mutations. Clinical features associated with defects in LAMP2 included male sex, severe hypertrophy, early onset (at 8 to 17 years of age), ventricular preexcitation, and asymptomatic elevations of two serum proteins. LAMP2 mutations typically cause multisystem glycogen-storage disease (Danon's disease) but can also present as a primary cardiomyopathy. The glycogen-storage cardiomyopathy produced by LAMP2 or PRKAG2 mutations resembles hypertrophic cardiomyopathy but is distinguished by electrophysiological abnormalities, particularly ventricular preexcitation. Copyright 2005 Massachusetts Medical Society.
                Bookmark

                Author and article information

                Journal
                Cardiovasc Ultrasound
                Cardiovascular Ultrasound
                BioMed Central
                1476-7120
                2010
                17 March 2010
                : 8
                : 7
                Affiliations
                [1 ]Department of Clinical Medicine, Cardiovascular and Immunological Sciences, University Federico II, Naples, Italy
                [2 ]CMSR Veneto Medica -Altavilla Vicentina, Italy
                [3 ]Department of Clinical and Experimental Medicine, University Federico II, Naples, Italy
                [4 ]Referral Center for Myocardial Diseases, Careggi University Hospital, Florence
                [5 ]Noninvasive Cardiology Unit, Ospedale San Raffaele, IRCCS, Milano, Italy
                [6 ]Cardiology Operative Unit, S. Maria Annunziata Hospital, Firenze, Italy
                [7 ]Department of Clinical Medicine, University of Pisa, Pisa, Italy
                [8 ]Chair of Cardiology, Second University of Naples, Naples, Italy
                [9 ]Azienda Ospedaliera Universitaria, Ferrara, Italy
                [10 ]Department of Cardiovascular, Respiratory and Morphological Sciences, University of Rome, University La Sapienza, Rome, Italy
                [11 ]Department of Cardiovascular Diseases, University of Siena, Italy
                Article
                1476-7120-8-7
                10.1186/1476-7120-8-7
                2848131
                20236538
                d39b197f-4d45-42d5-a4dd-58592540aa1c
                Copyright ©2010 Losi et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 27 January 2010
                : 17 March 2010
                Categories
                Review

                Cardiovascular Medicine
                Cardiovascular Medicine

                Comments

                Comment on this article