31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Signaling, Polyubiquitination, Trafficking, and Inclusions: Sequestosome 1/p62's Role in Neurodegenerative Disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aggregated misfolded proteins are hallmarks of most neurodegenerative diseases. In a chronic disease state, including pathologic situations of oxidative stress, these proteins are sequestered into inclusions. Accumulation of aggregated proteins can be prevented by chaperones, or by targeting their degradation to the UPS. If the accumulation of these proteins exceeds their degradation, they may impair the function of the proteasome. Alternatively, the function of the proteasome may be preserved by directing aggregated proteins to the autophagy-lysosome pathway for degradation. Sequestosome 1/p62 has recently been shown to interact with polyubiquitinated proteins through its UBA domain and may direct proteins to either the UPS or autophagosome. P62 is present in neuronal inclusions of individuals with Alzheimer's disease and other neurodegenerative diseases. Herein, we review p62's role in signaling, aggregation, and inclusion formation, and specifically as a possible contributor to Alzheimer's disease. The use of p62 as a potential target for the development of therapeutics and as a disease biomarker is also discussed.

          Related collections

          Most cited references74

          • Record: found
          • Abstract: found
          • Article: not found

          Aggresomes: A Cellular Response to Misfolded Proteins

          Intracellular deposition of misfolded protein aggregates into ubiquitin-rich cytoplasmic inclusions is linked to the pathogenesis of many diseases. Why these aggregates form despite the existence of cellular machinery to recognize and degrade misfolded protein and how they are delivered to cytoplasmic inclusions are not known. We have investigated the intracellular fate of cystic fibrosis transmembrane conductance regulator (CFTR), an inefficiently folded integral membrane protein which is degraded by the cytoplasmic ubiquitin-proteasome pathway. Overexpression or inhibition of proteasome activity in transfected human embryonic kidney or Chinese hamster ovary cells led to the accumulation of stable, high molecular weight, detergent-insoluble, multiubiquitinated forms of CFTR. Using immunofluorescence and transmission electron microscopy with immunogold labeling, we demonstrate that undegraded CFTR molecules accumulate at a distinct pericentriolar structure which we have termed the aggresome. Aggresome formation is accompanied by redistribution of the intermediate filament protein vimentin to form a cage surrounding a pericentriolar core of aggregated, ubiquitinated protein. Disruption of microtubules blocks the formation of aggresomes. Similarly, inhibition of proteasome function also prevented the degradation of unassembled presenilin-1 molecules leading to their aggregation and deposition in aggresomes. These data lead us to propose that aggresome formation is a general response of cells which occurs when the capacity of the proteasome is exceeded by the production of aggregation-prone misfolded proteins.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Ubiquitin: structures, functions, mechanisms.

            Ubiquitin is the founding member of a family of structurally conserved proteins that regulate a host of processes in eukaryotic cells. Ubiquitin and its relatives carry out their functions through covalent attachment to other cellular proteins, thereby changing the stability, localization, or activity of the target protein. This article reviews the basic biochemistry of these protein conjugation reactions, focusing on ubiquitin itself and emphasizing recent insights into mechanism and specificity.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.

              The ubiquitin-proteasome system targets numerous cellular proteins for degradation. In addition, modifications by ubiquitin-like proteins as well as proteins containing ubiquitin-interacting and -associated motifs modulate many others. This tightly controlled process involves multiple specific and general enzymes of the system as well as many modifying and ancillary proteins. Thus, it is not surprising that ubiquitin-mediated degradation/processing/modification regulates a broad array of basic cellular processes. Moreover, aberrations in the system have been implicated, either as a primary cause or secondary consequence, in the pathogenesis of both inherited and acquired neurodegenerative diseases. Recent findings indicate that the system is involved in the pathogenesis of Parkinson's, Alzheimer's, Huntington's, and Prion diseases as well as amyotrophic lateral sclerosis. This raises hopes for a better understanding of the pathogenetic mechanisms involved in these diseases and for the development of novel, mechanism-based therapeutic modalities.
                Bookmark

                Author and article information

                Journal
                J Biomed Biotechnol
                JBB
                Journal of Biomedicine and Biotechnology
                Hindawi Publishing Corporation
                1110-7243
                1110-7251
                2006
                25 May 2006
                : 2006
                : 62079
                Affiliations
                Program in Cell & Molecular Biosciences, Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
                Author notes
                *M. Lamar Seibenhener: seibemi@ 123456auburn.edu
                Article
                10.1155/JBB/2006/62079
                1559922
                17047309
                d39e2742-0419-4725-9236-d5a8cfafabfa
                Copyright © 2006 Marie W. Wooten et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 30 November 2005
                : 20 February 2006
                : 27 February 2006
                Categories
                Review Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article