14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Role of ADAM17 in invasion and migration of CD133-expressing liver cancer stem cells after irradiation

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We investigated the biological role of CD133-expressing liver cancer stem cells (CSCs) enriched after irradiation of Huh7 cells in cell invasion and migration. We also explored whether a disintegrin and metalloproteinase-17 (ADAM17) influences the metastatic potential of CSC-enriched hepatocellular carcinoma (HCC) cells after irradiation. A CD133-expressing Huh7 cell subpopulation showed greater resistance to sublethal irradiation and specifically enhanced cell invasion and migration capabilities. We also demonstrated that the radiation-induced MMP-2 and MMP-9 enzyme activities as well as the secretion of vascular endothelial growth factor were increased more predominantly in Huh7 CD133+ cell subpopulations than Huh7 CD133− cell subpopulations. Furthermore, we showed that silencing ADAM17 significantly inhibited the migration and invasiveness of enriched Huh7 CD133+ cells after irradiation; moreover, Notch signaling was significantly reduced in irradiated CD133-expressing liver CSCs following stable knockdown of the ADAM17 gene. In conclusion, our findings indicate that CD133-expressing liver CSCs have considerable metastatic capabilities after irradiation of HCC cells, and their metastatic capabilities might be maintained by ADAM17. Therefore, suppression of ADAM17 shows promise for improving the efficiency of current radiotherapies and reducing the metastatic potential of liver CSCs during HCC treatment.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Notch promotes radioresistance of glioma stem cells.

          Radiotherapy represents the most effective nonsurgical treatments for gliomas. However, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we show that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) renders the glioma stem cells more sensitive to radiation at clinically relevant doses. GSIs enhance radiation-induced cell death and impair clonogenic survival of glioma stem cells but not non-stem glioma cells. Expression of the constitutively active intracellular domains of Notch1 or Notch2 protect glioma stem cells against radiation. Notch inhibition with GSIs does not alter the DNA damage response of glioma stem cells after radiation but rather reduces Akt activity and Mcl-1 levels. Finally, knockdown of Notch1 or Notch2 sensitizes glioma stem cells to radiation and impairs xenograft tumor formation. Taken together, our results suggest a critical role of Notch signaling to regulate radioresistance of glioma stem cells. Inhibition of Notch signaling holds promise to improve the efficiency of current radiotherapy in glioma treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Notch pathway inhibition depletes stem-like cells and blocks engraftment in embryonal brain tumors.

            The Notch signaling pathway is required in both nonneoplastic neural stem cells and embryonal brain tumors, such as medulloblastoma, which are derived from such cells. We investigated the effects of Notch pathway inhibition on medulloblastoma growth using pharmacologic inhibitors of gamma-secretase. Notch blockade suppressed expression of the pathway target Hes1 and caused cell cycle exit, apoptosis, and differentiation in medulloblastoma cell lines. Interestingly, viable populations of better-differentiated cells continued to grow when Notch activation was inhibited but were unable to efficiently form soft-agar colonies or tumor xenografts, suggesting that a cell fraction required for tumor propagation had been depleted. It has recently been hypothesized that a small population of stem-like cells within brain tumors is required for the long-term propagation of neoplastic growth and that CD133 expression and Hoechst dye exclusion (side population) can be used to prospectively identify such tumor-forming cells. We found that Notch blockade reduced the CD133-positive cell fraction almost 5-fold and totally abolished the side population, suggesting that the loss of tumor-forming capacity could be due to the depletion of stem-like cells. Notch signaling levels were higher in the stem-like cell fraction, providing a potential mechanism for their increased sensitivity to inhibition of this pathway. We also observed that apoptotic rates following Notch blockade were almost 10-fold higher in primitive nestin-positive cells as compared with nestin-negative ones. Stem-like cells in brain tumors thus seem to be selectively vulnerable to agents inhibiting the Notch pathway.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Aberrant activation of notch signaling in human breast cancer.

              A role for Notch signaling in human breast cancer has been suggested by both the development of adenocarcinomas in the murine mammary gland following pathway activation and the loss of Numb expression, a negative regulator of the Notch pathway, in a large proportion of breast carcinomas. However, it is not clear currently whether Notch signaling is frequently activated in breast tumors, and how it causes cellular transformation. Here, we show accumulation of the intracellular domain of Notch1 and hence increased Notch signaling in a wide variety of human breast carcinomas. In addition, we show that increased RBP-Jkappa-dependent Notch signaling is sufficient to transform normal breast epithelial cells and that the mechanism of transformation is most likely through the suppression of apoptosis. More significantly, we show that attenuation of Notch signaling reverts the transformed phenotype of human breast cancer cell lines, suggesting that inhibition of Notch signaling may be a therapeutic strategy for this disease.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 April 2016
                16 March 2016
                : 7
                : 17
                : 23482-23497
                Affiliations
                1 The Catholic University Liver Research Center and WHO Collaborating Center of Viral Hepatitis, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
                2 Department of New Biology and Center for Plant Aging Research, Institute for Basic Science, DGIST, Daegu, Republic of Korea
                Author notes
                Correspondence to: Seung Kew Yoon, yoonsk@ 123456catholic.ac.kr
                Article
                8112
                10.18632/oncotarget.8112
                5029641
                26993601
                d3a1a49f-2637-4271-b8fe-97f7aeb1032c
                Copyright: © 2016 Hong et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 20 August 2015
                : 28 February 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                cancer stem cells,hepatocellular carcinoma,radioresistance,adam17,migration

                Comments

                Comment on this article