24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Protocol: A simple phenol-based method for 96-well extraction of high quality RNA from Arabidopsis

      research-article
      1 , 1 , 3 , 1 , 1 , 2 ,
      Plant Methods
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Many experiments in modern plant molecular biology require the processing of large numbers of samples for a variety of applications from mutant screens to the analysis of natural variants. A severe bottleneck to many such analyses is the acquisition of good yields of high quality RNA suitable for use in sensitive downstream applications such as real time quantitative reverse-transcription-polymerase chain reaction (real time qRT-PCR). Although several commercial kits are available for high-throughput RNA extraction in 96-well format, only one non-kit method has been described in the literature using the commercial reagent TRIZOL.

          Results

          We describe an unusual phenomenon when using TRIZOL reagent with young Arabidopsis seedlings. This prompted us to develop a high-throughput RNA extraction protocol (HTP96) adapted from a well established phenol:chloroform-LiCl method (P:C-L) that is cheap, reliable and requires no specialist equipment. With this protocol 192 high quality RNA samples can be prepared in 96-well format in three hours (less than 1 minute per sample) with less than 1% loss of samples. We demonstrate that the RNA derived from this protocol is of high quality and suitable for use in real time qRT-PCR assays.

          Conclusion

          The development of the HTP96 protocol has vastly increased our sample throughput, allowing us to fully exploit the large sample capacity of modern real time qRT-PCR thermocyclers, now commonplace in many labs, and develop an effective high-throughput gene expression platform. We propose that the HTP96 protocol will significantly benefit any plant scientist with the task of obtaining hundreds of high quality RNA extractions.

          Related collections

          Most cited references7

          • Record: found
          • Abstract: found
          • Article: not found

          FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering.

          Winter-annual ecotypes of Arabidopsis are relatively late flowering, unless the flowering of these ecotypes is promoted by exposure to cold (vernalization). This vernalization-suppressible, late-flowering phenotype results from the presence of dominant, late-flowering alleles at two loci, FRIGIDA (FRI) and FLOWERING LOCUS C (FLC). In this study, we report that flc null mutations result in early flowering, demonstrating that the role of active FLC alleles is to repress flowering. FLC was isolated by positional cloning and found to encode a novel MADS domain protein. The levels of FLC mRNA are regulated positively by FRI and negatively by LUMINIDEPENDENS. FLC is also negatively regulated by vernalization. Overexpression of FLC from a heterologous promoter is sufficient to delay flowering in the absence of an active FRI allele. We propose that the level of FLC activity acts through a rheostat-like mechanism to control flowering time in Arabidopsis and that modulation of FLC expression is a component of the vernalization response.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Real-time RT-PCR profiling of over 1400 Arabidopsis transcription factors: unprecedented sensitivity reveals novel root- and shoot-specific genes.

            Summary To overcome the detection limits inherent to DNA array-based methods of transcriptome analysis, we developed a real-time reverse transcription (RT)-PCR-based resource for quantitative measurement of transcripts for 1465 Arabidopsis transcription factors (TFs). Using closely spaced gene-specific primer pairs and SYBR Green to monitor amplification of double-stranded DNA (dsDNA), transcript levels of 83% of all target genes could be measured in roots or shoots of young Arabidopsis wild-type plants. Only 4% of reactions produced non-specific PCR products. The amplification efficiency of each PCR was determined from the log slope of SYBR Green fluorescence versus cycle number in the exponential phase, and was used to correct the readout for each primer pair and run. Measurements of transcript abundance were quantitative over six orders of magnitude, with a detection limit equivalent to one transcript molecule in 1000 cells. Transcript levels for different TF genes ranged between 0.001 and 100 copies per cell. Only 13% of TF transcripts were undetectable in these organs. For comparison, 22K Arabidopsis Affymetrix chips detected less than 55% of TF transcripts in the same samples, the range of transcript levels was compressed by a factor more than 100, and the data were less accurate especially in the lower part of the response range. Real-time RT-PCR revealed 35 root-specific and 52 shoot-specific TF genes, most of which have not been identified as organ-specific previously. Finally, many of the TF transcripts detected by RT-PCR are not represented in Arabidopsis EST (expressed sequence tag) or Massively Parallel Signature Sequencing (MPSS) databases. These genes can now be annotated as expressed.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Towards a systematic validation of references in real-time rt-PCR.

                Bookmark

                Author and article information

                Journal
                Plant Methods
                Plant Methods
                BioMed Central
                1746-4811
                2011
                13 March 2011
                : 7
                : 7
                Affiliations
                [1 ]John Innes Centre, Norwich Research Park, Norwich, Norfolk, NR4 7UH, UK
                [2 ]The University of Queensland, Institute for Molecular Bioscience, St Lucia, Queensland, Australia
                [3 ]Current Address: Institut Jean-Pierre Bourgin, UMR1318 INRA-AgroParisTech, Bâtiment 7, INRA Centre de Versailles-Grignon, Route de St-Cyr (RD10), 78026 Versailles Cedex France
                Article
                1746-4811-7-7
                10.1186/1746-4811-7-7
                3069952
                21396125
                d3a91d09-764a-4188-a275-7e702c82bdd1
                Copyright ©2011 Box et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 January 2011
                : 13 March 2011
                Categories
                Methodology

                Plant science & Botany
                Plant science & Botany

                Comments

                Comment on this article