5
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sexuality during the COVID-19 pandemic: The importance of Internet

      review-article
      a , * , b
      Sexologies
      Sexologies. Published by Elsevier Masson SAS.
      Covid-19, Sexual health, Sexuality

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronavirus is an infectious disease that has affected many countries, changing daily life. For many individuals, sexual activity has decreased, physical contact within couples has been reduced. Obviously, to maintain a safe sex life, it is essential to know how to avoid the virus transmission. Distance creates irritability, fear, anxiety, endangering sexual life: it is reasonable to have sex between cohabiting partners unless one or both are at risk of infection. Despite this, the pandemic allows us to think of new sexual intimacies mediated by sextoys and technology. Not all distant couples are willing to have sex online, and it is difficult for singles to engage in casual sexual relations, so after the pandemic there will be many couples who will have to remodel and many singles who will seek a partner. Using the Internet to maintain active sexual activity appeared to be an excellent alternative to diminish the distance between partners or to increase online knowledge. The most common advice for separated couples was to maintain constant digital contact to alleviate nostalgia and lack. This was the springboard to use sexting, meeting via webcam or making a hot call that make the couple more uninhibited. Using the webcam, also sometimes with the possibility to use sex toys, could create also the opportunity to enrich the future sexual repertoire. Practicing online sex with the stable partner far from home has helped some to keep their desire active and to satisfy it in order to be able to realize it once the pandemic has ended. The purpose of this narrative review of available evidence on sexuality during COVID-19 pandemics is to provide recommendations to help people facing their sexual life in this critical period.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1

          To the Editor: A novel human coronavirus that is now named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (formerly called HCoV-19) emerged in Wuhan, China, in late 2019 and is now causing a pandemic. 1 We analyzed the aerosol and surface stability of SARS-CoV-2 and compared it with SARS-CoV-1, the most closely related human coronavirus. 2 We evaluated the stability of SARS-CoV-2 and SARS-CoV-1 in aerosols and on various surfaces and estimated their decay rates using a Bayesian regression model (see the Methods section in the Supplementary Appendix, available with the full text of this letter at NEJM.org). SARS-CoV-2 nCoV-WA1-2020 (MN985325.1) and SARS-CoV-1 Tor2 (AY274119.3) were the strains used. Aerosols (<5 μm) containing SARS-CoV-2 (105.25 50% tissue-culture infectious dose [TCID50] per milliliter) or SARS-CoV-1 (106.75-7.00 TCID50 per milliliter) were generated with the use of a three-jet Collison nebulizer and fed into a Goldberg drum to create an aerosolized environment. The inoculum resulted in cycle-threshold values between 20 and 22, similar to those observed in samples obtained from the upper and lower respiratory tract in humans. Our data consisted of 10 experimental conditions involving two viruses (SARS-CoV-2 and SARS-CoV-1) in five environmental conditions (aerosols, plastic, stainless steel, copper, and cardboard). All experimental measurements are reported as means across three replicates. SARS-CoV-2 remained viable in aerosols throughout the duration of our experiment (3 hours), with a reduction in infectious titer from 103.5 to 102.7 TCID50 per liter of air. This reduction was similar to that observed with SARS-CoV-1, from 104.3 to 103.5 TCID50 per milliliter (Figure 1A). SARS-CoV-2 was more stable on plastic and stainless steel than on copper and cardboard, and viable virus was detected up to 72 hours after application to these surfaces (Figure 1A), although the virus titer was greatly reduced (from 103.7 to 100.6 TCID50 per milliliter of medium after 72 hours on plastic and from 103.7 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). The stability kinetics of SARS-CoV-1 were similar (from 103.4 to 100.7 TCID50 per milliliter after 72 hours on plastic and from 103.6 to 100.6 TCID50 per milliliter after 48 hours on stainless steel). On copper, no viable SARS-CoV-2 was measured after 4 hours and no viable SARS-CoV-1 was measured after 8 hours. On cardboard, no viable SARS-CoV-2 was measured after 24 hours and no viable SARS-CoV-1 was measured after 8 hours (Figure 1A). Both viruses had an exponential decay in virus titer across all experimental conditions, as indicated by a linear decrease in the log10TCID50 per liter of air or milliliter of medium over time (Figure 1B). The half-lives of SARS-CoV-2 and SARS-CoV-1 were similar in aerosols, with median estimates of approximately 1.1 to 1.2 hours and 95% credible intervals of 0.64 to 2.64 for SARS-CoV-2 and 0.78 to 2.43 for SARS-CoV-1 (Figure 1C, and Table S1 in the Supplementary Appendix). The half-lives of the two viruses were also similar on copper. On cardboard, the half-life of SARS-CoV-2 was longer than that of SARS-CoV-1. The longest viability of both viruses was on stainless steel and plastic; the estimated median half-life of SARS-CoV-2 was approximately 5.6 hours on stainless steel and 6.8 hours on plastic (Figure 1C). Estimated differences in the half-lives of the two viruses were small except for those on cardboard (Figure 1C). Individual replicate data were noticeably “noisier” (i.e., there was more variation in the experiment, resulting in a larger standard error) for cardboard than for other surfaces (Fig. S1 through S5), so we advise caution in interpreting this result. We found that the stability of SARS-CoV-2 was similar to that of SARS-CoV-1 under the experimental circumstances tested. This indicates that differences in the epidemiologic characteristics of these viruses probably arise from other factors, including high viral loads in the upper respiratory tract and the potential for persons infected with SARS-CoV-2 to shed and transmit the virus while asymptomatic. 3,4 Our results indicate that aerosol and fomite transmission of SARS-CoV-2 is plausible, since the virus can remain viable and infectious in aerosols for hours and on surfaces up to days (depending on the inoculum shed). These findings echo those with SARS-CoV-1, in which these forms of transmission were associated with nosocomial spread and super-spreading events, 5 and they provide information for pandemic mitigation efforts.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Molecular and serological investigation of 2019-nCoV infected patients: implication of multiple shedding routes

            ABSTRACT In December 2019, a novel coronavirus (2019-nCoV) caused an outbreak in Wuhan, China, and soon spread to other parts of the world. It was believed that 2019-nCoV was transmitted through respiratory tract and then induced pneumonia, thus molecular diagnosis based on oral swabs was used for confirmation of this disease. Likewise, patient will be released upon two times of negative detection from oral swabs. However, many coronaviruses can also be transmitted through oral–fecal route by infecting intestines. Whether 2019-nCoV infected patients also carry virus in other organs like intestine need to be tested. We conducted investigation on patients in a local hospital who were infected with this virus. We found the presence of 2019-nCoV in anal swabs and blood as well, and more anal swab positives than oral swab positives in a later stage of infection, suggesting shedding and thereby transmitted through oral–fecal route. We also showed serology test can improve detection positive rate thus should be used in future epidemiology. Our report provides a cautionary warning that 2019-nCoV may be shed through multiple routes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found

              The Presence of SARS-CoV-2 RNA in Feces of COVID-19 Patients

              In December 2019, coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in Wuhan, China, and has spread globally. However, the transmission route of SARS-CoV-2 has not been fully understood. In this study, we aimed to investigate SARS-CoV-2 shedding in the excreta of COVID-19 patients. Electronical medical records, including demographics, clinical characteristics, laboratory and radiological findings of enrolled patients were extracted and analyzed. Pharyngeal swab, stool, and urine specimens were collected and tested for SARS-CoV-2 RNA by real-time reverse transcription polymerase chain reaction. Viral shedding at multiple time points in specimens was recorded, and its correlation analyzed with clinical manifestations and the severity of illness. A total of 42 laboratory-confirmed patients were enrolled, 8 (19.05%) of whom had gastrointestinal symptoms. A total of 28 (66.67%) patients tested positive for SARS-CoV-2 RNA in stool specimens, and this was not associated with the presence of gastrointestinal symptoms and the severity of illness. Among them, 18 (64.29%) patients remained positive for viral RNA in the feces after the pharyngeal swabs turned negative. The duration of viral shedding from the feces after negative conversion in pharyngeal swabs was 7 (6-10) days, regardless of COVID-19 severity. The demographics, clinical characteristics, laboratory and radiologic findings did not differ between patients who tested positive and negative for SARS-CoV-2 RNA in the feces. Viral RNA was not detectable in urine specimens from 10 patients. Our results demonstrated the presence of SARS-CoV-2 RNA in the feces of COVID-19 patients and suggested the possibility of SARS-CoV-2 transmission via the fecal-oral route.
                Bookmark

                Author and article information

                Journal
                Sexologies
                Sexologies. Published by Elsevier Masson SAS.
                1158-1360
                1158-1360
                2 January 2021
                2 January 2021
                Affiliations
                [a ]Sapienza University of Rome, Via di Grottarossa, 1035, 00189, Rome, Italy
                [b ]Academy of Social and Legal Psychology, Rome, Italy
                Author notes
                [* ]Corresponding author.
                Article
                S1158-1360(20)30120-1
                10.1016/j.sexol.2020.12.008
                7832719
                d3c83b36-7f64-4a8f-b31d-127fb4c872b0
                © 2020 Sexologies. Published by Elsevier Masson SAS. All rights reserved.

                Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.

                History
                Categories
                Clarification

                covid-19,sexual health,sexuality
                covid-19, sexual health, sexuality

                Comments

                Comment on this article