10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cognate Ligand Chaperoning: a Novel Mechanism for the Post-translational Regulation of Neurotransmitter Receptor Biogenesis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The functional unit for inter-neuronal communication in the central nervous system is the neuronal synapse. The number of postsynaptic neurotransmitter receptors at the cell surface is an important determinant of synaptic efficacy and plasticity. A diverse array of post-translational processes regulate postsynaptic receptor number, including receptor exocytosis, lateral diffusion, surface stabilization, endocytosis, and recycling, thus highlighting the importance of mechanisms that control postsynaptic receptor levels. Another putative post-translational mechanism for regulating receptor surface expression is cognate ligand chaperoning. It has been proposed that neurotransmitters function as cognate ligand chaperones by binding, within the endoplasmic reticulum (ER) lumen, to their nascent neurotransmitter receptors and facilitating receptor biogenesis. Here we discuss proof-of-concept evidence that small molecules can selectively facilitate the biogenesis of their targets and examine the specific evidence in support of cognate ligand chaperoning of neurotransmitter receptor biogenesis.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          GABA A receptors: subtypes provide diversity of function and pharmacology.

          This mini-review attempts to update experimental evidence on the existence of GABA(A) receptor pharmacological subtypes and to produce a list of those native receptors that exist. GABA(A) receptors are chloride channels that mediate inhibitory neurotransmission. They are members of the Cys-loop pentameric ligand-gated ion channel (LGIC) superfamily and share structural and functional homology with other members of that family. They are assembled from a family of 19 homologous subunit gene products and form numerous receptor subtypes with properties that depend upon subunit composition, mostly hetero-oligomeric. These vary in their regulation and developmental expression, and importantly, in brain regional, cellular, and subcellular localization, and thus their role in brain circuits and behaviors. We propose several criteria for including a receptor hetero-oligomeric subtype candidate on a list of native subtypes, and a working GABA(A) receptor list. These criteria can be applied to all the members of the LGIC superfamily. The list is divided into three categories of native receptor subtypes: "Identified", "Existence with High Probability", and "Tentative", and currently includes 26 members, but will undoubtedly grow, with future information. This list was first presented by Olsen & Sieghart (in press).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            GABAA receptor trafficking-mediated plasticity of inhibitory synapses.

            Proper developmental, neural cell-type-specific, and activity-dependent regulation of GABAergic transmission is essential for virtually all aspects of CNS function. The number of GABA(A) receptors in the postsynaptic membrane directly controls the efficacy of GABAergic synaptic transmission. Thus, regulated trafficking of GABA(A) receptors is essential for understanding brain function in both health and disease. Here we summarize recent progress in the understanding of mechanisms that allow dynamic adaptation of cell surface expression and postsynaptic accumulation and function of GABA(A) receptors. This includes activity-dependent and cell-type-specific changes in subunit gene expression, assembly of subunits into receptors, as well as exocytosis, endocytic recycling, diffusion dynamics, and degradation of GABA(A) receptors. In particular, we focus on the roles of receptor-interacting proteins, scaffold proteins, synaptic adhesion proteins, and enzymes that regulate the trafficking and function of receptors and associated proteins. In addition, we review neuropeptide signaling pathways that affect neural excitability through changes in GABA(A)R trafficking. Copyright © 2011 Elsevier Inc. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Paused RNA polymerase II as a developmental checkpoint.

              The textbook view of gene activation is that the rate-limiting step is the interaction of RNA polymerase II (Pol II) with the gene's promoter. However, studies in a variety of systems, including human embryonic stem cells and the early Drosophila embryo, have begun to challenge this view. There is increasing evidence that differential gene expression often depends on the regulation of transcription elongation via the release of Pol II from the proximal promoter. I review the implications of this mechanism of gene activation with respect to the orderly unfolding of complex gene networks governing animal development. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Cell Neurosci
                Front Cell Neurosci
                Front. Cell. Neurosci.
                Frontiers in Cellular Neuroscience
                Frontiers Media S.A.
                1662-5102
                15 August 2017
                2017
                : 11
                : 245
                Affiliations
                Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center Shreveport, LA, United States
                Author notes

                Edited by: Ara Sahak Bazyan, Institute of Higher Nervous Activity and Neurophysiology (RAS), Russia

                Reviewed by: Terence Hébert, McGill University, Canada; Shiva Tyagarajan, University of Zurich, Switzerland

                *Correspondence: Nancy J. Leidenheimer nleide@ 123456lsuhsc.edu
                Article
                10.3389/fncel.2017.00245
                5559506
                d3dbd7c9-2ba9-4f24-9a00-beea8d10a29f
                Copyright © 2017 Leidenheimer.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 02 June 2017
                : 02 August 2017
                Page count
                Figures: 0, Tables: 0, Equations: 0, References: 94, Pages: 9, Words: 8194
                Funding
                Funded by: National Institutes of Health 10.13039/100000002
                Award ID: R01MH062640
                Categories
                Neuroscience
                Hypothesis and Theory

                Neurosciences
                cognate ligand chaperoning,endoplasmic reticulum,gabaa receptor,glutamate receptor,pharmacological chaperone

                Comments

                Comment on this article