34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Focal stimulation of the temporoparietal junction improves rationality in prosocial decision-making

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We tested the hypothesis that modulation of neurocomputational inputs to value-based decision-making affects the rationality of economic choices. The brain’s right temporoparietal junction (rTPJ) has been functionally associated with both social behavior and with domain-general information processing and attention. To identify the causal function of rTPJ in prosocial decisions, we administered focal high definition transcranial direct current stimulation (HD-tDCS) while participants allocated money between themselves and a charity in a modified dictator game. Anodal stimulation led to improved rationality as well as increased charitable giving and egalitarianism, resulting in more consistent and efficient choices and increased sensitivity to the price of giving. These results are consistent with the theory that anodal stimulation of the rTPJ increases the precision of value computations in social decision-making. Our results demonstrate that theories of rTPJ function should account for the multifaceted role of the rTPJ in the representation of social inputs into value-based decisions.

          Related collections

          Most cited references68

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Structural absorption by barbule microstructures of super black bird of paradise feathers

          Many studies have shown how pigments and internal nanostructures generate color in nature. External surface structures can also influence appearance, such as by causing multiple scattering of light (structural absorption) to produce a velvety, super black appearance. Here we show that feathers from five species of birds of paradise (Aves: Paradisaeidae) structurally absorb incident light to produce extremely low-reflectance, super black plumages. Directional reflectance of these feathers (0.05–0.31%) approaches that of man-made ultra-absorbent materials. SEM, nano-CT, and ray-tracing simulations show that super black feathers have titled arrays of highly modified barbules, which cause more multiple scattering, resulting in more structural absorption, than normal black feathers. Super black feathers have an extreme directional reflectance bias and appear darkest when viewed from the distal direction. We hypothesize that structurally absorbing, super black plumage evolved through sensory bias to enhance the perceived brilliance of adjacent color patches during courtship display.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Judgment under Uncertainty: Heuristics and Biases.

            This article described three heuristics that are employed in making judgements under uncertainty: (i) representativeness, which is usually employed when people are asked to judge the probability that an object or event A belongs to class or process B; (ii) availability of instances or scenarios, which is often employed when people are asked to assess the frequency of a class or the plausibility of a particular development; and (iii) adjustment from an anchor, which is usually employed in numerical prediction when a relevant value is available. These heuristics are highly economical and usually effective, but they lead to systematic and predictable errors. A better understanding of these heuristics and of the biases to which they lead could improve judgements and decisions in situations of uncertainty.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Control of goal-directed and stimulus-driven attention in the brain.

              We review evidence for partially segregated networks of brain areas that carry out different attentional functions. One system, which includes parts of the intraparietal cortex and superior frontal cortex, is involved in preparing and applying goal-directed (top-down) selection for stimuli and responses. This system is also modulated by the detection of stimuli. The other system, which includes the temporoparietal cortex and inferior frontal cortex, and is largely lateralized to the right hemisphere, is not involved in top-down selection. Instead, this system is specialized for the detection of behaviourally relevant stimuli, particularly when they are salient or unexpected. This ventral frontoparietal network works as a 'circuit breaker' for the dorsal system, directing attention to salient events. Both attentional systems interact during normal vision, and both are disrupted in unilateral spatial neglect.
                Bookmark

                Author and article information

                Contributors
                alecsmith@vt.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 November 2020
                20 November 2020
                2020
                : 10
                : 20275
                Affiliations
                [1 ]GRID grid.443514.3, ISNI 0000 0004 1791 5258, Economics Experimental Lab, , Nanjing Audit University, ; Nanjing, China
                [2 ]GRID grid.438526.e, ISNI 0000 0001 0694 4940, Department of Economics, , Virginia Tech, ; Blacksburg, VA USA
                [3 ]GRID grid.438526.e, ISNI 0000 0001 0694 4940, School of Neuroscience, , Virginia Tech, ; Blacksburg, VA USA
                Article
                76956
                10.1038/s41598-020-76956-9
                7680130
                33219290
                d3dce0ab-5511-429b-917e-449b6658c43e
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 17 April 2020
                : 3 November 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                social behaviour,social neuroscience,human behaviour,neuroscience,neurophysiology
                Uncategorized
                social behaviour, social neuroscience, human behaviour, neuroscience, neurophysiology

                Comments

                Comment on this article