+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      NMDA 2A receptors in parvalbumin cells mediate sex-specific rapid ketamine response on cortical activity

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Ketamine has emerged as a widespread treatment for a variety of psychiatric disorders when used at sub-anesthetic doses, but the neural mechanisms underlying its acute action remain unclear. Here, we identified NMDA receptors containing the 2A subunit (GluN2A) on parvalbumin (PV)-expressing inhibitory interneurons as a pivotal target of low-dose ketamine. Genetically deleting GluN2A receptors globally or selectively from PV interneurons abolished the rapid enhancement of visual cortical responses and gamma-band oscillations by ketamine. Moreover, during the follicular phase of the estrous cycle in female mice, the ketamine response was transiently attenuated along with a concomitant decrease of grin2A mRNA expression within PV interneurons. Thus, GluN2A receptors on PV interneurons mediate the immediate actions of low-dose ketamine treatment, and fluctuations in receptor expression across the estrous cycle may underlie sex-differences in drug efficacy.

          Related collections

          Most cited references 66

          • Record: found
          • Abstract: found
          • Article: not found

          Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks.

          Gamma frequency oscillations are thought to provide a temporal structure for information processing in the brain. They contribute to cognitive functions, such as memory formation and sensory processing, and are disturbed in some psychiatric disorders. Fast-spiking, parvalbumin-expressing, soma-inhibiting interneurons have a key role in the generation of these oscillations. Experimental analysis in the hippocampus and the neocortex reveals that synapses among these interneurons are highly specialized. Computational analysis further suggests that synaptic specialization turns interneuron networks into robust gamma frequency oscillators.
            • Record: found
            • Abstract: found
            • Article: not found

            NMDA Receptor Blockade at Rest Triggers Rapid Behavioural Antidepressant Responses

            Clinical studies consistently demonstrate that a single sub-psychomimetic dose of ketamine, an ionotropic glutamatergic n-methyl-d-aspartate receptor (NMDAR) antagonist, produces fast-acting antidepressant responses in patients suffering from major depressive disorder (MDD), although the underlying mechanism is unclear 1-3 . Depressed patients report alleviation of MDD symptoms within two hours of a single low-dose intravenous infusion of ketamine with effects lasting up to two weeks 1-3 , unlike traditional antidepressants (i.e. serotonin reuptake inhibitors), which take weeks to reach efficacy. This delay is a major drawback to current MDD therapies, leaving a need for faster acting antidepressants particularly for suicide-risk patients 3 . Ketamine's ability to produce rapidly acting, long-lasting antidepressant responses in depressed patients provides a unique opportunity to investigate underlying cellular mechanisms. We show that ketamine and other NMDAR antagonists produce fast-acting behavioural antidepressant-like effects in mouse models that depend on rapid synthesis of brain-derived neurotrophic factor (BDNF). We find that ketamine-mediated NMDAR blockade at rest deactivates eukaryotic elongation factor 2 (eEF2) kinase (also called CaMKIII) resulting in reduced eEF2 phosphorylation and desuppression of BDNF translation. Furthermore, we find inhibitors of eEF2 kinase induce fast-acting behavioural antidepressant-like effects. Our findings suggest that protein synthesis regulation by spontaneous neurotransmission may serve as a viable therapeutic target for fast-acting antidepressant development.
              • Record: found
              • Abstract: found
              • Article: not found

              NMDAR inhibition-independent antidepressant actions of ketamine metabolites

              Major depressive disorder afflicts ~16 percent of the world population at some point in their lives. Despite a number of available monoaminergic-based antidepressants, most patients require many weeks, if not months, to respond to these treatments, and many patients never attain sustained remission of their symptoms. The non-competitive glutamatergic N-methyl-D-aspartate receptor (NMDAR) antagonist, (R,S)-ketamine (ketamine), exerts rapid and sustained antidepressant effects following a single dose in depressed patients. Here we show that the metabolism of ketamine to (2S,6S;2R,6R)-hydroxynorketamine (HNK) is essential for its antidepressant effects, and that the (2R,6R)-HNK enantiomer exerts behavioural, electroencephalographic, electrophysiological and cellular antidepressant actions in vivo. Notably, we demonstrate that these antidepressant actions are NMDAR inhibition-independent but they involve early and sustained α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor activation. We also establish that (2R,6R)-HNK lacks ketamine-related side-effects. Our results indicate a novel mechanism underlying ketamine’s unique antidepressant properties, which involves the required activity of a distinct metabolite and is independent of NMDAR inhibition. These findings have relevance for the development of next generation, rapid-acting antidepressants.

                Author and article information

                Mol Psychiatry
                Mol. Psychiatry
                Molecular Psychiatry
                Nature Publishing Group UK (London )
                29 January 2019
                29 January 2019
                : 24
                : 6
                : 828-838
                [1 ]ISNI 000000041936754X, GRID grid.38142.3c, FM Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, , Harvard Medical School, ; 300 Longwood Avenue, Boston, MA 02115 USA
                [2 ]ISNI 000000041936754X, GRID grid.38142.3c, Center for Brain Science, Department of Molecular Cellular Biology, , Harvard University, ; 52 Oxford Street, Cambridge, MA 02138 USA
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit

                Funded by: FundRef, U.S. Department of Health & Human Services | NIH | National Institute of Mental Health (NIMH);
                Award ID: 1P50MH094271
                Award Recipient :
                Funded by: FundRef, Pfizer (Pfizer Inc.);
                Funded by: FundRef, Nancy Lurie Marks Family Foundation (NLM Family Foundation);
                Funded by: FundRef, U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS);
                Award ID: R01 NS095959
                Award Recipient :
                Funded by: FundRef, U.S. Department of Health & Human Services | NIH | National Eye Institute (NEI);
                Award ID: R01 EY013613
                Award Recipient :
                Immediate Communication
                Custom metadata
                © Springer Nature Limited 2019

                Molecular medicine

                depression, neuroscience


                Comment on this article