12
views
0
recommends
+1 Recommend
1 collections
    0
    shares

          The flagship journal of the Society for Endocrinology. Learn more

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The androgen-thyroid hormone crosstalk in prostate cancer and the clinical implications

      review-article

      Read this article at

      ScienceOpenPublisherPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          There is increasing evidence that thyroid hormones (THs) work in an integrative fashion with androgen receptors (ARs) to regulate gonadal differentiation and reproductive function. Studies reveal that THs have interactions with the AR promoter region and increase AR expression. THs also have a role in the regulation of enzymes involved in the biosynthesis of androgens, such as 5α-reductase, which is essential in the conversion of testosterone into its active form, 5α-dihydrotestosterone. Additionally, the presence of androgen response elements in the promoter regions of TH-related genes, such as deiodinases and TH receptor isoforms, has been identified in some vertebrates, indicating a mutual interaction between THs and ARs. Since the androgen signaling pathway, mediated by ARs, plays a key role in the formation and progression of prostate cancer (PCa), the existence of crosstalk between THs and ARs supports the epidemiologic and experimental evidence indicating a relationship between the high incidence of PCa and hyperthyroidism. This article aims to review the role of androgen-TH crosstalk in PCa and its implication in clinical management. As life expectancy is growing these days, it can increase the number of patients with PCa and the critical relevance of the disease. In order to gain better knowledge about PCa and to improve clinical management, it is essential to get better insight into the key factors related to the formation and progression of this cancer.

          Related collections

          Most cited references85

          • Record: found
          • Abstract: found
          • Article: not found

          Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries

          This article provides an update on the global cancer burden using the GLOBOCAN 2020 estimates of cancer incidence and mortality produced by the International Agency for Research on Cancer. Worldwide, an estimated 19.3 million new cancer cases (18.1 million excluding nonmelanoma skin cancer) and almost 10.0 million cancer deaths (9.9 million excluding nonmelanoma skin cancer) occurred in 2020. Female breast cancer has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%), followed by lung (11.4%), colorectal (10.0 %), prostate (7.3%), and stomach (5.6%) cancers. Lung cancer remained the leading cause of cancer death, with an estimated 1.8 million deaths (18%), followed by colorectal (9.4%), liver (8.3%), stomach (7.7%), and female breast (6.9%) cancers. Overall incidence was from 2-fold to 3-fold higher in transitioned versus transitioning countries for both sexes, whereas mortality varied <2-fold for men and little for women. Death rates for female breast and cervical cancers, however, were considerably higher in transitioning versus transitioned countries (15.0 vs 12.8 per 100,000 and 12.4 vs 5.2 per 100,000, respectively). The global cancer burden is expected to be 28.4 million cases in 2040, a 47% rise from 2020, with a larger increase in transitioning (64% to 95%) versus transitioned (32% to 56%) countries due to demographic changes, although this may be further exacerbated by increasing risk factors associated with globalization and a growing economy. Efforts to build a sustainable infrastructure for the dissemination of cancer prevention measures and provision of cancer care in transitioning countries is critical for global cancer control.
            • Record: found
            • Abstract: found
            • Article: not found

            The steroid and thyroid hormone receptor superfamily.

            Analyses of steroid receptors are important for understanding molecular details of transcriptional control, as well as providing insight as to how an individual transacting factor contributes to cell identity and function. These studies have led to the identification of a superfamily of regulatory proteins that include receptors for thyroid hormone and the vertebrate morphogen retinoic acid. Although animals employ complex and often distinct ways to control their physiology and development, the discovery of receptor-related molecules in a wide range of species suggests that mechanisms underlying morphogenesis and homeostasis may be more ubiquitous than previously expected.
              • Record: found
              • Abstract: found
              • Article: not found

              Physiological and molecular basis of thyroid hormone action.

              P M Yen (2001)
              Thyroid hormones (THs) play critical roles in the differentiation, growth, metabolism, and physiological function of virtually all tissues. TH binds to receptors that are ligand-regulatable transcription factors belonging to the nuclear hormone receptor superfamily. Tremendous progress has been made recently in our understanding of the molecular mechanisms that underlie TH action. In this review, we present the major advances in our knowledge of the molecular mechanisms of TH action and their implications for TH action in specific tissues, resistance to thyroid hormone syndrome, and genetically engineered mouse models.

                Author and article information

                Journal
                Eur Thyroid J
                Eur Thyroid J
                ETJ
                European Thyroid Journal
                Bioscientifica Ltd (Bristol )
                2235-0640
                2235-0802
                17 March 2023
                17 March 2023
                01 June 2023
                : 12
                : 3
                : e220228
                Affiliations
                [1 ]Department of Clinical Medicine and Surgery , University of Naples ’Federico II’, Naples, Italy
                [2 ]Department of Neurosciences , Reproductive Sciences and Odontostomatology, University of Naples Federico II
                [3 ]CEINGE – Biotecnologie Avanzate Scarl , Naples, Italy
                Author notes
                Correspondence should be addressed to M Dentice: monica.dentice@ 123456unina.it

                *(F Crocetto and M Dentice contributed equally to this work)

                Author information
                http://orcid.org/0000-0003-0616-8077
                http://orcid.org/0000-0003-4884-132X
                http://orcid.org/0000-0002-9977-3761
                Article
                ETJ-22-0228
                10.1530/ETJ-22-0228
                10160561
                36930264
                d40344ac-74fc-4a4c-b7c3-2ba623e62b9e
                © the author(s)

                This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

                History
                : 14 March 2023
                : 17 March 2023
                Categories
                Review

                thyroid hormone,androgens,prostate cancer
                thyroid hormone, androgens, prostate cancer

                Comments

                Comment on this article

                Related Documents Log