28
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The effects of four weeks aerobic training on saliva cortisol and testosterone in young healthy persons

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          [Purpose] The purpose of this study was to evaluate the effect of 4 weeks moderate aerobic exercise on outcome measures of saliva stress hormones and lactate levels in healthy adult volunteers. [Subjects and Methods] Sixteen healthy students with an age range of 15–25 years participated in this study. The participants performed an exercise test of moderate intensity for 4 weeks, three times per week. The exercise was treadmill walking. Saliva concentrations of cortisol, testosterone and lactate dehydrogenase (LDH) were measured before and after the 4 weeks of moderate aerobic training using immunoassay techniques. [Results] After 4 weeks of exercise, there were significant increases in cortisol, free testosterone levels, and LDH activity along with a significant decrease in the ratios between testosterone and cortisol levels. No significant correlations were found among the studied parameters in the resting stage, a result which supports the positive effect of exercise on stress hormones following 4 weeks of training. [Conclusion] The results suggest that four weeks exercise of moderate intensity significantly affects the salivary stress hormones of young healthy volunteers. The data support the importance of salivary stress hormones as potential biological markers especially for older ages. However, more research is required to validate these biological markers which determine the host response to physical activity.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          The effects of training on heart rate; a longitudinal study.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biochemical markers of muscular damage.

            Muscle tissue may be damaged following intense prolonged training as a consequence of both metabolic and mechanical factors. Serum levels of skeletal muscle enzymes or proteins are markers of the functional status of muscle tissue, and vary widely in both pathological and physiological conditions. Creatine kinase, lactate dehydrogenase, aldolase, myoglobin, troponin, aspartate aminotransferase, and carbonic anhydrase CAIII are the most useful serum markers of muscle injury, but apoptosis in muscle tissues subsequent to strenuous exercise may be also triggered by increased oxidative stress. Therefore, total antioxidant status can be used to evaluate the level of stress in muscle by other markers, such as thiobarbituric acid-reactive substances, malondialdehyde, sulfhydril groups, reduced glutathione, oxidized glutathione, superoxide dismutase, catalase and others. As the various markers provide a composite picture of muscle status, we recommend using more than one to provide a better estimation of muscle stress.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Hormonal responses and adaptations to resistance exercise and training.

              Resistance exercise has been shown to elicit a significant acute hormonal response. It appears that this acute response is more critical to tissue growth and remodelling than chronic changes in resting hormonal concentrations, as many studies have not shown a significant change during resistance training despite increases in muscle strength and hypertrophy. Anabolic hormones such as testosterone and the superfamily of growth hormones (GH) have been shown to be elevated during 15-30 minutes of post-resistance exercise providing an adequate stimulus is present. Protocols high in volume, moderate to high in intensity, using short rest intervals and stressing a large muscle mass, tend to produce the greatest acute hormonal elevations (e.g. testosterone, GH and the catabolic hormone cortisol) compared with low-volume, high-intensity protocols using long rest intervals. Other anabolic hormones such as insulin and insulin-like growth factor-1 (IGF-1) are critical to skeletal muscle growth. Insulin is regulated by blood glucose and amino acid levels. However, circulating IGF-1 elevations have been reported following resistance exercise presumably in response to GH-stimulated hepatic secretion. Recent evidence indicates that muscle isoforms of IGF-1 may play a substantial role in tissue remodelling via up-regulation by mechanical signalling (i.e. increased gene expression resulting from stretch and tension to the muscle cytoskeleton leading to greater protein synthesis rates). Acute elevations in catecholamines are critical to optimal force production and energy liberation during resistance exercise. More recent research has shown the importance of acute hormonal elevations and mechanical stimuli for subsequent up- and down-regulation of cytoplasmic steroid receptors needed to mediate the hormonal effects. Other factors such as nutrition, overtraining, detraining and circadian patterns of hormone secretion are critical to examining the hormonal responses and adaptations to resistance training.
                Bookmark

                Author and article information

                Journal
                J Phys Ther Sci
                J Phys Ther Sci
                JPTS
                Journal of Physical Therapy Science
                The Society of Physical Therapy Science
                0915-5287
                2187-5626
                22 July 2015
                July 2015
                : 27
                : 7
                : 2029-2033
                Affiliations
                [1) ] Rehabilitation Research Chair (RRC), Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University, Saudi Arabia
                [2) ] Department of Anatomy, Faculty of Medicine, Mansoura University, Egypt
                [3) ] Faculty of Physical Therapy, Cairo University, Egypt
                Author notes
                [* ]Corresponding author. Sami A. Gabr, Rehabilitation Research Chair (RRC), Department of Rehabilitation Sciences, College of Applied Medical Sciences, King Saud University: P.O. Box 10219 Riyadh 11433, Saudi Arabia. (E-mail: nadalab2009@ 123456hotmail.com ; drGabr14@ 123456yahoo.com ; sgabr@ 123456ksu.edu.sa )
                Article
                jpts-2015-090
                10.1589/jpts.27.2029
                4540811
                26311920
                d40462f8-a895-4572-afcf-6e72ecb9e4f2
                2015©by the Society of Physical Therapy Science. Published by IPEC Inc.

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives (by-nc-nd) License.

                History
                : 06 February 2015
                : 17 March 2015
                Categories
                Original Article

                aerobic exercise,saliva stress hormones,physical activity

                Comments

                Comment on this article